We report extensive laser-induced damage threshold measurements on dielectric materials at wavelengths of 1053 and 526 nm for pulse durations ranging from 140 fs to 1 ns. Qualitative differences in the morphology of damage and a departure from the diffusion-dominated 1/2 scaling of the damage fluence indicate that damage occurs from ablation for р10 ps and from conventional melting, boiling, and fracture for Ͼ50 ps. We find a decreasing threshold fluence associated with a gradual transition from the long-pulse, thermally dominated regime to an ablative regime dominated by collisional and multiphoton ionization, and plasma formation. A theoretical model based on electron production via multiphoton ionization, Joule heating, and collisional ͑avalanche͒ ionization is in quantitative agreement with the experimental results.
This is a prepdnt of a paper intended for publication in a journal ozproceedinge. Since changer may be made before publication, thip preprint is made available with the understanding that it will not be cited ac reproduced without the permission of the author.
Laser-induced damage threshold measurements were performed on homogeneous and multilayer dielectrics and gold-coated optics at 1053 and 526 nm for pulse durations t ranging from 140 fs to 1 ns. Gold coatings were found, both experimentally and theoretically, to be limited to 0.6 J͞cm 2 in the subpicosecond range for 1053-nm pulses. In dielectrics, we find qualitative differences in the morphology of damage and a departure from the diffusion-dominated t 1/2 scaling that indicate that damage results from plasma formation and ablation for t # 10 ps and from conventional heating and melting for t . 50 ps. A theoretical model based on electron production by multiphoton ionization, joule heating, and collisional (avalanche) ionization is in quantitative agreement with both the pulse-width and the wavelength scaling of experimental results.
There is a strong deviation from the usual 1/2 scaling of laser damage fluence for pulses below 10 ps in dielectric materials. This behavior is a result of the transition from a thermally dominated damage mechanism to one dominated by plasma formation on a time scale too short for significant energy transfer to the lattice. This new mechanism of damage ͑material removal͒ is accompanied by a qualitative change in the morphology of the interaction site and essentially no collateral damage. High precision machining of all dielectrics ͑oxides, fluorides, explosives, teeth, glasses, ceramics, SiC, etc.͒ with no thermal shock or distortion of the remaining material by this mechanism is described.
The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child’s law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60–200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental knowledge for discovery-class science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.