The work hardening behaviour of Fe-Mn-C twinning induced plasticity (TWIP) steels with a wide compositional range has been investigated. Based on the consideration that twinning provides a dynamic composite effect resulting in high work hardening rate in TWIP steels, the present work proposes a model to describe such behaviour as a function of chemical composition. The model predictions are in good agreement with experimental observations.
Wire + Arc Additive Manufacture is an Additive Manufacturing process that requires a substrate to initiate the deposition process. In order to reduce material waste, build and lead time, and improve process efficiency, it is desirable to include this substrate in the final part design. This approach is a valid option only if the interface between the substrate and the deposited metal properties conform to the design specifications. The effect of substrate type on the interface microstructure in an aluminium part was investigated. Microstructure and micro-hardness measurements show the effect of substrate alloy and temper on the interface between the substrate and deposited material. Microcracks in the as-deposited condition were only found in one substrate. The deposited material hardness is always lower than the substrate hardness. However, this difference can be minimised by heat treatment and even eliminated when the substrate and wire are made of the same alloy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.