Recent climate modeling results point to the Arctic as a region that is particularly sensitive to global climate change. The Arctic warming predicted by the models to result from the expected doubling of atmospheric carbon dioxide is two to three times the predicted mean global warming, and considerably greater than the warming predicted for the Antarctic. The North Slope of Alaska-Adjacent Arctic Ocean (NSA-AAO) Cloud and Radiation Testbed (CART) site of the Atmospheric Radiation Measurement (ARM) Program is designed to collect data on temperature-ice-albedo and water vapor-cloud-radiation feedbacks, which are believed to be important to the predicted enhanced warming in the Arctic. The most important scientific issues of Arctic, as well as global, significance to be addressed at the NSA-AAO CART site are discussed, and a brief overview of the current approach toward, and status of, site development is provided. ARM radiometric and remote sensing instrumentation is already deployed and taking data in the perennial Arctic ice pack as part of the SHEBA (Surface Heat Budget of the Arctic Ocean) experiment. In parallel with ARM's participation in SHEBA, the NSA-AAO facility near Barrow was formally dedicated on 1 July 1997 and began routine data collection early in 1998. This schedule permits the U.S. Department of Energy's ARM Program, NASA's Arctic Cloud program, and the SHEBA program (funded primarily by the National Science Foundation and the Office of Naval Research) to be mutually supportive. In addition, location of the NSA-AAO Barrow facility on National Oceanic and Atmospheric Administration land immediately adjacent to its Climate Monitoring and Diagnostic Laboratory Barrow Observatory includes NOAA in this major interagency Arctic collaboration.
The Ames airborne, autotracking sunphotometer has been operated aboard a Sandia Laboratories research aircraft to measure magnitudes, temporal/spatial variabilities, and wavelength dependence of optical depths in the near‐ultraviolet to near‐infrared spectrum of smoke from two forest fires and one jet fuel fire and of background air. The results were corrected for Rayleigh scattering and for estimated absorption by ozone and nitrogen dioxide. Characteristic differences in the aerosol optical depths of background atmospheres and of different types of smokes are the following: (1) the magnitude and wavelength dependence of “background” optical depths vary with the geographic location at which the measurements are performed; (2) the wavelength dependence of smoke optical depths depends on the fuels that feed the fires and on the residence time of the smoke cloud in the atmosphere. In general, the jet fuel smoke optical depths tended to be less wavelength dependent (near‐ultraviolet to near‐infrared) than background aerosol optical depths. Forest fire smoke optical depths showed a wide range of wavelength dependences, including incidents of wavelength‐independent extinction.
An isotope-shift, Zeeman-effect atomic absorption spectrometer has been demonstrated to have sufficient sensitivity to continuously monitor the total mercury content of ambient air. At present, the minimum total mercury concentration detectable with this device is 0.2 microgram per cubic meter of air-one fifth of the proposed federal guideline. This is the first technique which responds to both mercury vapor and mercury in particulates available for continuous monitoring at this concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.