An international Intercomparison of 3D Radiation Codes (I3RC) underscores the vast progress of recent years, but also highlights the challenges ahead for routine implementation in remote sensing and global climate modeling applications. Modeling atmospheric and oceanic processes is one of the most important methods of the earth sciences for understanding the interactions of the various components of the surface-atmosphere system and predicting future weather and climate states. Great leaps in the availability of computing power at continuously decreasing costs have led to widespread popularity of computer models for research and operational applications. As part of routine scientific work, output from models built for AFFILIATIONS: CAHALAN-NASA
Research funded by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program has led to significant improvements in longwave radiative transfer modeling over the last decade. These improvements, which have generally come in small incremental changes, were made primarily in the water vapor self- and foreign-broadened continuum and the water vapor absorption line parameters. These changes, when taken as a whole, result in up to a 6 W m−2 improvement in the modeled clear-sky downwelling longwave radiative flux at the surface and significantly better agreement with spectral observations. This paper provides an overview of the history of ARM with regard to clear-sky longwave radiative transfer, and analyzes remaining related uncertainties in the ARM state-of-the-art Line-by-Line Radiative Transfer Model (LBLRTM). A quality measurement experiment (QME) for the downwelling infrared radiance at the ARM Southern Great Plains site has been ongoing since 1994. This experiment has three objectives: 1) to validate and improve the absorption models and spectral line parameters used in line-by-line radiative transfer models, 2) to assess the ability to define the atmospheric state, and 3) to assess the quality of the radiance observations that serve as ground truth for the model. Analysis of data from 1994 to 1997 made significant contributions to optimizing the QME, but is limited by small but significant uncertainties and deficiencies in the atmospheric state and radiance observations. This paper concentrates on the analysis of QME data from 1998 to 2001, wherein the data have been carefully selected to address the uncertainties in the 1994–97 dataset. Analysis of this newer dataset suggests that the representation of self-broadened water vapor continuum absorption is 3%–8% too strong in the 750–1000 cm−1 region. The dataset also provides information on the accuracy of the self- and foreign-broadened continuum absorption in the 1100–1300 cm−1 region. After accounting for these changes, remaining differences in modeled and observed downwelling clear-sky fluxes are less than 1.5 W m−2 over a wide range of atmospheric states.
An international program of intercomparison of radiation codes used in climate models has been initiated because of the central role of radiative processes in many proposed climate change mechanisms. During the past 6 years, results of calculations from such radiation codes have been compared with each other, with results from the most detailed radiation models (line‐by‐line models) and with observations from within the atmosphere. Line‐by‐line model results tend to agree with each other to within 1%; however, the intercomparison shows a spread of 10–20% in the calculations of radiation budget components by the less detailed climate model codes. The spread among the results is even larger (30–40%) for the sensitivities of the codes to changes in radiatively important variables, such as carbon dioxide and water vapor. The analysis of the model calculations shows that the outliers to many of the clear‐sky calculations appear to be related to those models that have not tested the techniques used to perform the integration over altitude. When those outliers are removed, the agreement between narrow band models and the line‐by‐line models is about ±2% for fluxes at the atmospheric boundaries, about ±5% for the flux divergence for the troposphere, and to about ±5% for the change of the net flux at the tropopause as CO2 doubles. However, this good agreement does not extend to the majority of the models currently used in climate models. The lack of highly accurate flux observations from within the atmosphere has made it necessary to rely on line‐by‐line model results for evaluating model accuracy. As the intercomparison project has proceeded, the number of models agreeing more closely with the line‐by‐line results has increased as the understanding of the various parameterizations has improved and as coding errors have been discovered. The most recent results indicate that several climate model techniques are in the marginal range of (relative) accuracy for longwave flux calculations for many climate programs. However, not all such models will give such accuracy. It is recommended that a code not be accepted to provide such accuracy until it has made comparisons to the line‐by‐line results of this study. The data necessary to make such comparisons are included herein. However, uncertainties in the physics of line wings and in the proper treatment of the water vapor continuum make it impossible for the line‐by‐line models to provide an absolute reference for evaluating less‐detailed model calculations. A dedicated field measurement program is recommended for the purpose of obtaining accurate spectral radiance rather than integrated fluxes as a basis for evaluating model performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.