Intracellular symbiosis is widespread in the insect world where it plays an important role in evolution and adaptation. The weevil family Dryophthoridae (Curculionoidea) is of particular interest in intracellular symbiosis evolution with regard to the great economical and ecological features of these invasive insects, and the potential for comparative studies across a wide range of host plants and environments. Here, we have analyzed the intracellular symbiotic bacteria of 19 Dryophthoridae species collected worldwide, representing a wide range of plant species and tissues. All except one (Sitophilus linearis) harbor symbiotic bacteria within specialized cells (the bacteriocytes) assembled as an organ, the bacteriome. Phylogenetic analysis of the 16S rDNA gene sequence of the Dryophthoridae endosymbionts revealed three endosymbiotic clades belonging to gamma3-Proteobacteria and characterized by different GC contents and evolutionary rate. The genus name Candidatus Nardonella was proposed for the ancestral clade infesting Dryophthoridae 100 MYA and represented by five of nine bacterial genera studied. For this clade showing low GC content (40.5% GC) and high evolutionary rate (0.128 substitutions/site per 100 Myr), a single infection and subsequent cospeciation of the host and the endosymbionts was observed. In the two other insect lineage endosymbionts, with relatively high GC content (53.4% and 53.8% GC), competition with ancestral pathogenic bacteria might have occurred, leading to endosymbiont replacement in present-day last insects.
A green biotype of the pea aphid, A. pisum, from Lusignan (France), showed very poor performance on the standard Akey and Beck diet. Significant improvement occurred after reduction of the osmotic pressure of the diet and modification of the amino acid component, according to the results of carcass analysis. A further improvement was obtained through an optimalization of the aromatic amino acid level: the tyrosine deficiency induced by its poor solubility was overcome by an excess of phenylalanine and the inclusion of a soluble tyrosine compound, β-alanyltyrosine. A new diet was therefore formulated for this biotype, on which adults were more than twice as heavy as on the standard diet.
The predatory coccinellid Harmonia axyridis is a polyphagous species, efficient at controlling certain aphid species and already commercialized in Europe for that purpose. The complete development of this predator can be accomplished using the aphid Acyrthosiphon pisum or Ephestia kuehniella eggs as substitution prey. Biochemical analyses were conducted on the proteins, lipids, and carbohydrates of these two different prey species. E. kuehniella eggs were 2 times richer in amino acids than A. pisum adults (12% of the fresh weight vs. 6%). E. kuehniella eggs were 3 times richer in lipids than the aphids but, on the contrary, the aphids were 1.5 times richer in glycogen. The impact of these two kinds of food on the body composition of the coccinellid was evaluated to appreciate the degree of nutritional plasticity of the coccinellid. The composition of the coccinellids feeding either on E. kuehniella eggs or on aphids was compared for amino acid, fatty acid and glycogen contents, revealing a good capability of H. axyridis to develop on foods that are very different in their biochemical composition. Nevertheless, when fed on aphids, the crude protein content of the predator was reduced and the lipid content decreased by a factor of two, with a change in amino and fatty acid patterns. Some biological parameters, such as larval mortality, adult weight, and fecundity, were modified according to the food eaten.
In the melon, the Vat (monogenic, dominant) resistance gene governs both an antixenotic reaction to the melon aphid Aphis gossypii Glover (Homoptera, Aphididae) and a resistance to non-persistent virus transmission, restricted to this vector species. We investigated the behavioural features and tissue localisation of the antixenosis resistance by the electrical penetration graph technique (EPG, DC system). We also compared the chemical composition in amino compounds and proteins of the phloem sap collected from two isogenic lines of melon (Cucumis melo L.), carrying the Vat gene or not. All behavioural and chemical data indicated that this resistance is constitutive. EPG analysis clearly showed that access to phloem, although delayed by alterations in pathway activities, was not impaired in terms of frequency of access or initiation of feeding. The most striking feature was, however, a very reduced duration of ingestion from phloem of resistant plants, making this compartment one of the tissues where the effects of the Vat gene are unambiguously expressed. This was confirmed by clear differential activity of phloem extracts in artificial no-choice bioassays. Chemical analyses have shown that phloem saps from the two isogenic lines were extremely similar in profiles of ninhydrin positive compounds, and contained a low total amount of free amino acids (less than 10 mM). Out of more than 40 distinguishable peaks in the chromatograms (protein and non-protein amino acids, as well as small peptides), only five differentiated the two genotypes. Two of them were increased in the resistant genotype: glutamic acid and a major unknown peak, probably a non-protein amino acid (different from pyrazolyl-alanine, a Cucumis-specific amino acid). The three others were depressed in resistant plants, and included the sulphur amino acid cystine and a peptide peak partly composed of the cysteine-containing peptide glutathione (reduced form). Sap collection also showed that phloem exudation rates, as well as total protein and glutathione levels, were depressed in phloem sap from resistant plants. Such data are all indicative of a modified phloem-sealing physiology, linked to sulfhydryl oxidation processes, in plants carrying the Vat gene. The originality of the mechanism of Vat resistance to aphids is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.