Abstracti mb_942 249..258The pea aphid genome includes 66 genes contributing to amino acid biosynthesis and 93 genes to amino acid degradation. In several respects, the pea aphid gene inventory complements that of its symbiotic bacterium, Buchnera aphidicola (Buchnera APS). Unlike other insects with completely sequenced genomes, the pea aphid lacks the capacity to synthesize arginine, which is produced by Buchnera APS. However, consistent with other insects, it has genes coding for individual reactions in essential amino acid biosynthesis, including threonine dehydratase and branched-chain amino acid aminotransferase, which are not coded in the Buchnera APS genome. Overall the genome data suggest that the biosynthesis of certain essential amino acids is shared between the pea aphid and Buchnera APS, providing the opportunity for precise aphid control over Buchnera metabolism.
Acute toxicity of thirty lectins was tested against the pea aphid Acyrthosiphon pisum (Harris) (Homoptera, Aphididae: Macrosiphini). Activity was measured on artificial diets containing moderate concentrations of lectins (10–250 μg/ml) by scoring mortality and growth inhibition over the whole nymphal period (7 days at 20°C). Most of the proteins tested exhibited low toxicity, but some induced significant mortality; these included the lectins from jackbean (Concanavalin A), amaranth, lentil and snowdrop. There was no direct correlation between toxicity and sugar specificity of the lectin; however, many mannose‐binding lectins were toxic towards A. pisum. Concanavalin A was also tested on five other aphid species (Aphis gossypii, Aulacortum solani, Macrosiphum euphorbiae, Macrosiphum albifrons and Myzus persicae) at concentrations between 10–1500 μg/ml. Mortality was very variable from one species to another. Strong growth inhibition invariably occurred within this concentration range, although dose‐response curves differed substantially between aphid species. The peptidase complement of A. pisum's digestive tract was also investigated, as well as the oral toxicity of some protease inhibitors (PIs) to this aphid. Most protein PIs were inactive, and no part of the digestive tract contained detectable amounts of endo‐protease activity. This is in contrast to the strong amino‐peptidase activity which was shown to occur predominantly in the midgut and crop portions of the digestive tract. The potential of lectins in transgenic crops to confer Host‐Plant Resistance to aphids is discussed.
A green biotype of the pea aphid, A. pisum, from Lusignan (France), showed very poor performance on the standard Akey and Beck diet. Significant improvement occurred after reduction of the osmotic pressure of the diet and modification of the amino acid component, according to the results of carcass analysis. A further improvement was obtained through an optimalization of the aromatic amino acid level: the tyrosine deficiency induced by its poor solubility was overcome by an excess of phenylalanine and the inclusion of a soluble tyrosine compound, β-alanyltyrosine. A new diet was therefore formulated for this biotype, on which adults were more than twice as heavy as on the standard diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.