Abstract-A systematic experimental and numerical study of the device performance of waveguide-coupled SiON microresonators with air and polymer cladding is presented. Values of device parameters like propagation losses of the microresonator modes, the off-resonance insertion losses, and the straight waveguide to microresonator coupling are determined by applying a detailed fitting procedure to the experimental results and compared to results of detailed numerical simulations. By comparing the propagation losses of the fundamental TE polarized microresonator mode obtained by fitting to the measured spectra to the also experimentally determined propagation losses in the adjacent straight waveguide and the materials losses, it is possible to identify the loss mechanisms in the microresonator. By comparing experimental results for microresonators with air and polymethylmethacrylate cladding and a detailed numerical study, the influence of the cladding index on the bend losses is evaluated. It is demonstrated that the presence of an upper cladding can, under the right conditions, actually be beneficial for loss reduction.
Abstract-A novel discretely tunable laser based on filtered feedback is presented. The semiconductor device consists of a FabryPerot laser with deeply etched broadband distributed Bragg reflector mirrors. Single-mode operation is achieved by using feedback from an integrated filter. This filter contains an arrayed waveguide grating wavelength router and a semiconductor optical amplifier gate array. Design, simulation, and the first characterization results of this new integrated filtered-feedback tunable laser device are presented. It shows a combination of a simple and robust switching algorithm with good wavelength stability. A rate equation model predicts that a properly designed device can switch within 1 ns. The fast switching and reduced control complexity makes the device very promising for various advanced applications in optical telecommunication networks.
We present a widely tunable extended cavity ring laser operating at 2 μm that is monolithically integrated on an indium phosphide substrate. The photonic integrated circuit is designed and fabricated within a multiproject wafer run using a generic integration technology platform. The laser features an intracavity tuning mechanism based on nested asymmetric Mach-Zehnder interferometers with voltage controlled electro-refractive modulators. The laser operates in a single-mode regime and is tunable over the recorded wavelength range of 31 nm, spanning from 2011 to 2042 nm. Its capability for high-resolution scanning is demonstrated in a single-line spectroscopy experiment using a carbon dioxide reference cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.