Efforts to further elucidate structure-activity relationships (SAR) within our previously disclosed series of beta-quaternary amino acid linked l-cis-4,5-methanoprolinenitrile dipeptidyl peptidase IV (DPP-IV) inhibitors led to the investigation of vinyl substitution at the beta-position of alpha-cycloalkyl-substituted glycines. Despite poor systemic exposure, vinyl-substituted compounds showed extended duration of action in acute rat ex vivo plasma DPP-IV inhibition models. Oxygenated putative metabolites were prepared and were shown to exhibit the potency and extended duration of action of their precursors in efficacy models measuring glucose clearance in Zucker(fa/fa) rats. Extension of this approach to adamantylglycine-derived inhibitors led to the discovery of highly potent inhibitors, including hydroxyadamantyl compound BMS-477118 (saxagliptin), a highly efficacious, stable, and long-acting DPP-IV inhibitor, which is currently undergoing clinical trials for treatment of type 2 diabetes.
A series of 7,6- and 7,5-fused bicyclic thiazepinones and oxazepinones were generated and incorporated as conformationally restricted dipeptide surrogates in mercaptoacyl dipeptides. These compounds are potent inhibitors of angiotensin-converting enzyme (ACE) and neutral endopeptidase (NEP) both in vitro and in vivo. Compound 1a, a 7,6-fused bicyclic thiazepinone, demonstrated excellent blood pressure lowering in a variety of animal models characterized by various levels of plasma renin activity and significantly potentiated urinary sodium, ANP, and cGMP excretion in a cynomolgus monkey assay. On the basis of its potency and duration of action, compound 1a (BMS-186716) was advanced into clinical development for the treatment of hypertension and congestive heart failure.
A series of methanoprolinenitrile-containing dipeptide mimetics were synthesized and assayed as inhibitors of the N-terminal sequence-specific serine protease dipeptidyl peptidase IV (DPP-IV). The catalytic action of DPP-IV is the principle means of degradation of glucagon-like peptide-1, a key mediator of glucose-stimulated insulin secretion, and DPP-IV inhibition shows clinical benefit as a novel mechanism for treatment of type 2 diabetes. However, many of the reversible inhibitors to date suffer from chemical instability stemming from an amine to nitrile intramolecular cyclization. Installation of a cyclopropyl moiety at either the 3,4- or 4,5-position of traditional 2-cyanopyrrolidide proline mimetics led to compounds with potent inhibitory activity against the enzyme. Additionally, cis-4,5-methanoprolinenitriles with beta-branching in the N-terminal amino acid provided enhanced chemical stability and high inhibitory potency. This class of inhibitors also exhibited the ability to suppress prandial glucose elevations after an oral glucose challenge in male Zucker rats.
1 There are at least two subtypes of vascular endothelin (ET) receptors. Stimulation of the ETA receptors on vascular smooth muscle cells leads to vasoconstriction, whereas activation of the ETB receptors on endothelial cells elicits vasodilatation. Several reports in the literature have suggested the presence of a vasoconstrictor non-ETA receptor on vascular smooth muscle which has pharmacological similarities to the ETB receptor. The present study was undertaken to determine the location of this ETB-like receptor within the vascular system. 2 Fourteen vascular smooth muscle preparations from six species were used to determine the effect of the ETA receptor antagonist, BQ-123, on concentration-response curves elicited by ET-1 and the ability of the ETB receptor agonist, sarafotoxin S6c, to cause contraction. The vessels fell into two categories. One group was sensitive to BQ-123 and insensitive to sarafotoxin S6c and, thus, probably contained ETA receptors. The other group, with vasoconstrictor ETB-like receptors, was insensitive to BQ-123 and sensitive to sarafotoxin S6c. 3 Vessels from cynomolgus monkeys, when studied in vitro, appeared to contain primarily ETA receptors, although the potency of BQ-123 was quite variable, suggesting the possibility of ETA receptor subtypes. In contrast, both ET-1 and sarafotoxin S6c, given as intravenous injections in conscious monkeys, produced transient, equipotent, and dose-related increases in blood pressure. The highest dose of sarafotoxin S6c (1 nmol kg-', i.v.) also caused a marked secondary depressor response (-80± 6 mmHg) that lasted approximately 10 min. The pressor responses suggest that the vasoconstrictor ETB-like receptors are present in cynomolgus monkeys. 4 The data suggest the presence of two distinct vasoconstrictor ET receptor subtypes on smooth muscle cells. The ETA receptors are primarily located on the high pressure side of the circulation. The vasoconstrictor ETB-like receptors appear to be concentrated on the low pressure side.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.