In this study, the diarrhoea model is developed based on basic mathematical modelling techniques leading to a system (five compartmental model) of ordinary differential equations (ODEs). Mathematical analysis of the model is then carried out on the uniqueness and existence of the model to know the region where the model is epidemiologically feasible. The equilibrium points of the model and the stability of the disease-free state were also derived by finding the reproduction number. We then progressed to running a global sensitivity analysis on the reproduction number with respect to all the parameters in it, and four (4) parameters were found sensitive. The work was concluded with numerical simulations on Maple 18 using Runge-Kutta method of order four (4) where the values of six (6) parameters present in the model were each varied successively while all other parameters were held constant so as to know the behaviour and effect of the varied parameter on how diarrhoea spreads in the population. The results from the sensitivity analysis and simulations were found to be in sync.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.