Abstract:The major active ingredient of marijuana, (-)-z~9 -tetrahydrocannabinol, exerts its psychoactive effects via binding to cannabinoid CB1 receptors, which are widely distributed in the brain. Radionuclide imaging of CB1 receptors in living human subjects would help explore the presently unknown physiological roles of this receptor system, as well as the neurochemical consequences of marijuana dependence. Currently available cannabinoid receptor radioligands are exceedingly lipophilic and unsuitable for in vivo use. We report the development of a novel radioligand,
Methylphenidate (MP) (Ritalin) is widely used for the treatment of attention deficit hyperactivity disorder (ADHD). It is a chiral drug, marketed as the racemic mixture of d-and l-threo enantiomers. Our previous studies (PET and microdialysis) in humans, baboons, and rats confirm the notion that pharmacological specificity of MP resides predominantly in the d-isomer. A recent report that intraperitoneally (i.p.) administered l-threo-MP displayed potent, dose-dependent inhibition of cocaine-or apomorphine-induced locomotion in rats, raises the question of whether l-threo-MP has a similar effect when given orally. It has been speculated that l-threo-MP is poorly absorbed in humans when it is given orally because of rapid presystemic metabolism. To investigate whether l-threo-MP or its metabolites can be delivered to the brain when it is given orally, and whether l-threo-MP is pharmacologically active. PET and MicroPET studies were carried out in baboons and rats using orally delivered C-11-labeled d-and l-threo-MP ([methyl- ]CO 2 , derived from demethylation, was excluded by ex vivo studies in rats. When l-threo-MP was given i.p. to mice at a dose of 3 mg/kg, it neither stimulated locomotor activity nor inhibited the increased locomotor activity due to cocaine administration. These results suggest that, in animal models, l-threo-MP or its metabolite(s) is (are) absorbed from the gastrointestinal tract and enters the brain after oral administration, but that l-threo-MP may not be pharmacologically active. These results are pertinent to the question of whether l-threo-MP contributes to the behavioral and side effect profile of MP during treatment of ADHD. Synapse 53: 168 -175, 2004.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.