Similar to jet engine development, modern design methods are used today to improve the performance of industrial compressors. In order to verify the loading limits, a cascade profile representative for the first rotor hub section of an industrial compressor has been designed by optimizing the suction surface velocity distribution using a direct boundary layer calculation method. The blade shape was computed with an inverse full potential code and the resulting cascade was tested in a cascade wind tunnel. The experimental results confirmed the design intent and resulted in a low loss coefficient of 1.8 percent at design condition and an incidence range of nearly 12 deg (4 percent loss level) at an inlet Mach number of 0.62.
Similarly as in jet engine development, modern design methods are used today to improve the performance of industrial compressors. In order to verify the loading limits, a cascade profile representative for the first rotor hub section of an industrial compressor has been designed by optimizing the suction surface velocity distribution using a direct boundary layer calculation method. The blade shape was computed with an inverse full potential code and the resulting cascade was tested in a cascade windtunnel. The experimental results confirmed the design intent and resulted in a low loss coefficient of 1.8% at design condition and an incidence range of nearly 12° (4% loss level) at an inlet Mach number of 0.62.
An industrial axial compressor has to meet a wide range of operation requirements and therefore must run within the whole compressor map without restrictions at an overall high level of efficiency. Additionally a robust design is required allowing a continuous operation of up to five years under industrial boundary conditions without inspection. These requirements led the industrial turbomachinery market to be generally conservative and sensitive to every single change through modern compressor development. The consequence for industrial compressor designs are, that these have made only moderate development steps during the last 50 years. This paper deals with a novel hybrid axial flow compressor, which combines the advantages of an conventional industrial compressor, such as good operating range and efficiency, with the advantages of gas turbine compressors, mainly the higher power density resulting in a higher stage pressure ratio. Furthermore, the surge robustness of the novel compressor blading has been strongly improved. Starting from scratch, the development began with comprehensive matrix studies in all areas of the design, taking into account aerodynamics, mechanics, rotor dynamics and power density in order to ascertain the overall optimum for this new hybrid generation. State of the art CFD analysis has been intensively used to optimize the compressor blading as well as the flow behavior of inlet and exit for the specified requirements and different compressor control mechanisms. The novel hybrid compressor is designed for a volume flow of 930 000 m3/h and allows a scaling from 100 000 up to 1 500 000 m3/h of air. To verify the design, a rig — downscaled by the factor of 3 — was tested. The rig was intensively instrumented with thermocouples and pressure probes, a torquemeter, strain gauges, tip-timing probes, and transient pressure transducers. Besides the measurement of blading performance, inlet and exit flange-to-flange instrumentation has been used to collect performance data under a variety of industrial operating conditions. The compressor behavior will be presented with a focus on aerodynamic aspects. The analytical and experimental data will be discussed in detail.
Industrial axial flow compressors are specially designed to achieve a wide operating range. The analysis of an existing six-stage axial flow research compressor indicated that the front stage could be improved significantly using modern design technique. To demonstrate the advantages of such a technique a redesign of the current front stage was conducted. By controlling the diffusion inside the blade sections with an inverse design method, loading was enlarged. Higher loading normally results in a reduction of profile incidence range. For compensation a wide chord application was chosen. Compared to the original compressor version, experiments resulted in steeper characteristic curves together with larger usable operating range. Keeping the same outer and inner diameter, mass flow was increased by 6 percent. Measurements of performance curves with variable speed and for guide vane control are presented. Theoretical calculations achieve a high degree of agreement with measured performance.
Industrial axial flow compressors are specially designed to achieve a wide operating range. The analysis of an existing 6 stage axial flow research compressor indicated that the front stage could be improved significantly using modern design technique. To demonstrate the advantages of such a technique a redesign of the current front stage was conducted. By controlling the diffusion inside the blade sections with an inverse design method, loading was enlarged. Higher loading normally results in a reduction of profile incidence range. For compensation a wide chord application was chosen. Compared to the original compressor version, experiments resulted in steeper characteristic curves together with larger usable operating range. Keeping the same outer and inner diameter, mass flow was increased by 6%. Measurements of performance curves with variable speed and for guide vane control are presented. Theoretical calculations achieve a high degree of agreement with measured performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.