Abstract-This paper presents a new framework of identifying a series of cyber data attacks on power system synchrophasor measurements. We focus on detecting "unobservable" cyber data attacks that cannot be detected by any existing method that purely relies on measurements received at one time instant. Leveraging the approximate low-rank property of phasor measurement unit (PMU) data, we formulate the identification problem of successive unobservable cyber attacks as a matrix decomposition problem of a low-rank matrix plus a transformed columnsparse matrix. We propose a convex-optimization-based method and provide its theoretical guarantee in the data identification. Numerical experiments on actual PMU data from the Central New York power system and synthetic data are conducted to verify the effectiveness of the proposed method.Index Terms-cyber data attacks, low-rank matrix, matrix decomposition, synchrophasor measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.