Abstract-This paper presents a new framework of identifying a series of cyber data attacks on power system synchrophasor measurements. We focus on detecting "unobservable" cyber data attacks that cannot be detected by any existing method that purely relies on measurements received at one time instant. Leveraging the approximate low-rank property of phasor measurement unit (PMU) data, we formulate the identification problem of successive unobservable cyber attacks as a matrix decomposition problem of a low-rank matrix plus a transformed columnsparse matrix. We propose a convex-optimization-based method and provide its theoretical guarantee in the data identification. Numerical experiments on actual PMU data from the Central New York power system and synthetic data are conducted to verify the effectiveness of the proposed method.Index Terms-cyber data attacks, low-rank matrix, matrix decomposition, synchrophasor measurements.
Diverse fault types, fast re-closures, and complicated transient states after a fault event make real-time fault location in power grids challenging. Existing localization techniques in this area rely on simplistic assumptions, such as static loads, or require much higher sampling rates or total measurement availability. This paper proposes a faulted line localization method based on a Convolutional Neural Network (CNN) classifier using bus voltages. Unlike prior data-driven methods, the proposed classifier is based on features with physical interpretations that improve the robustness of the location performance. The accuracy of our CNN based localization tool is demonstrably superior to other machine learning classifiers in the literature. To further improve the location performance, a joint phasor measurement units (PMU) placement strategy is proposed and validated against other methods. A significant aspect of our methodology is that under very low observability (7% of buses), the algorithm is still able to localize the faulted line to a small neighborhood with high probability. The performance of our scheme is validated through simulations of faults of various types in the IEEE 39-bus and 68bus power systems under varying uncertain conditions, system observability, and measurement quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.