Objective To use genetic variants as unconfounded proxies of C reactive protein concentration to study its causal role in coronary heart disease. Design Mendelian randomisation meta-analysis of individual participant data from 47 epidemiological studies in 15 countries. Participants 194 418 participants, including 46 557 patients with prevalent or incident coronary heart disease. Information was available on four CRP gene tagging single nucleotide polymorphisms (rs3093077, rs1205, rs1130864, rs1800947), concentration of C reactive protein, and levels of other risk factors. Main outcome measures Risk ratios for coronary heart disease associated with genetically raised C reactive protein versus risk ratios with equivalent differences in C reactive protein concentration itself, adjusted for conventional risk factors and variability in risk factor levels within individuals. Results CRP variants were each associated with up to 30% per allele difference in concentration of C reactive protein (P<10 −34) and were unrelated to other risk factors. Risk ratios for coronary heart disease per additional copy of an allele associated with raised C reactive protein were 0.93 (95% confidence interval 0.87 to 1.00) for rs3093077; 1.00 (0.98 to 1.02) for rs1205; 0.98 (0.96 to 1.00) for rs1130864; and 0.99 (0.94 to 1.03) for rs1800947. In a combined analysis, the risk ratio for coronary heart disease was 1.00 (0.90 to 1.13) per 1 SD higher genetically raised natural log (ln) concentration of C reactive protein. The genetic findings were discordant with the risk ratio observed for coronary heart disease of 1.33 (1.23 to 1.43) per 1 SD higher circulating ln concentration of C reactive protein in prospective studies (P=0.001 for difference). Conclusion Human genetic data indicate that C reactive protein concentration itself is unlikely to be even a modest causal factor in coronary heart disease.
Deciphering the genetic landscape of Alzheimer disease (AD) is essential to define the pathophysiological pathways involved and to successfully translate genomics to potential tailored medical care. To generate the most complete knowledge of the AD genetics, we developed through the European Alzheimer Disease BioBank (EADB) consortium a discovery meta-analysis of genome-wide association studies (GWAS) based on a new large case-control study and previous GWAS (in total 39,106 clinically diagnosed cases, 46,828 proxy-AD cases and 401,577 controls) with the most promising signals followed-up in independent samples (18,063 cases and 23,207 controls). In addition to 34 known AD loci, we report here the genome-wide significant association of 31 new loci with the risk of AD. Pathway-enrichment analyses strongly indicated the involvement of gene sets related to amyloid and Tau, but also highlighted microglia, in which increased gene expression corresponds to more significant AD risk. In addition, we successfully prioritized candidate genes in the majority of our new loci, with nine being primarily expressed in microglia. Finally, we observed that a polygenic risk score generated from this new genetic landscape was strongly associated with the risk of progression from mild cognitive impairment (MCI) to dementia (4,609 MCI cases of whom 1,532 converted to dementia), independently of age and the APOE e4 allele.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.