A stochastic SIR model with vertical transmission and vaccination is proposed and investigated in this paper. The threshold dynamics are explored when the noise is small. The conditions for the extinction or persistence of infectious diseases are deduced. Our results show that large noise can lead to the extinction of infectious diseases which is conducive to epidemic diseases control.
In this paper, a predator-prey model with Holling type-I functional response and multi state impulsive feedback control is established, where the intensity of pesticide spraying and the release amount of natural enemies are linearly dependent on the given threshold in the second impulse. Firstly, the existence of order-1 periodic solution of the system is investigated by successor functions and Bendixson theorem of impulsive differential equations, then the stability of periodic solutions is proved by the analogue of the Poincaré criterion. Furthermore, in order to reduce the actual total cost and obtain the best economic benefit, the optimal economic threshold is obtained, which provides the optimal strategy for the practical application. Finally, numerical simulations for specific examples are carried out to illustrate the feasibility of the above conclusions.
In this paper, a stochastic SIS epidemic model with nonlinear incidence rate and double epidemic hypothesis is proposed and analysed. We explain the effects of stochastic disturbance on disease transmission. To this end, firstly, we investigated the dynamic properties of the system neglecting stochastic disturbance and obtained the threshold and the conditions for the extinction and the permanence of two kinds of epidemic diseases by considering the stability of the equilibria of the deterministic system. Secondly, we paid prime attention on the threshold dynamics of the stochastic system and established the conditions for the extinction and the permanence of two kinds of epidemic diseases. We found that there exists a significant difference between the threshold of the deterministic system and that of the stochastic system. Moreover, it has been established that the persistent of infectious disease analysed by use of deterministic system becomes extinct under the same conditions due to the stochastic disturbance. This implies that a stochastic disturbance has significant impact on the spread of infectious diseases and the larger stochastic disturbance leads to control the epidemic diseases. In order to illustrate the dynamic difference between the deterministic system and the stochastic system, there have been given a series of numerical simulations by using different noise disturbance coefficients.
MSC: 60H10; 65C30; 91B70
This study investigated the impact of latent and maturation delay on the qualitative behaviour of a human immunodeficiency virus-1 (HIV-1) infection model with nonlinear functional response and absorption effect. Basic reproduction number (R 0 ), which is defined as the average number of infected cells produced by one infected cell after inserting it into a fully susceptible cell population is calculated for the proposed model. As R o (threshold) depends on the negatively exponential function of time delay, these parameters are responsible to predict the future propagation behaviour of the infection. Therefore, for smaller positive values of delay and larger positive values of infection rate, the infection becomes chronic. Besides, infection dies out with larger delays and lower infection rates. To make the model biologically more sensible, we used the functional form of response function that plays an important role rather than the bilinear response function. Existence of equilibria and stability behaviour of the proposed model totally depend on R o . Local stability properties of both infection free and chronic infection equilibria are established by utilising the characteristic equation. As it is crucially important to study the global behaviour at equilibria rather than the local behaviour, we used the method of Liapunov functional. By constructing suitable Liapunov functionals and applying LaSalle's invariance principle for delay differential equations, we established that infection free equilibrium is globally asymptotically stable if R 0 ≤ 1, which biologically means that infection dies out. Moreover, sufficient condition is derived for global stability of chronic infection equilibrium if R 0 > 1 , which biologically means that infection becomes chronic. Numerical simulations are given to illustrate the theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.