ABSTRACT. Lung cancer is a common malignant tumor that is characterized by high morbidity and poor prognosis. Studies suggest that an individual's genetic background affects the risk of developing lung cancer. Therefore, we investigated the relationship between gene polymorphisms and susceptibility to lung cancer. We recruited 308 primary lung cancer patients as subjects and 253 healthy adults as controls. After extraction of DNA from blood samples, gene polymorphisms in CYP1A1, GSTP1, ERCC2, XRCC1, and XRCC3 were investigated by polymerase chain reaction and restriction fragment length polymorphism. The frequencies of the genotypes in both groups were investigated to obtain odds ratios and 95% confidence intervals, and correlation analysis was carried out. The analysis results showed that the following polymorphisms were correlated with susceptibility to lung cancer: rs4646903 in CYP1A1 (P < 2 H.X. Liu et al.Genetics and Molecular Research 15 (4): gmr15048813 0.001), rs1048943 in CYP1A1 (P < 0.001), rs1695 in GSTP1 (P < 0.05), rs13181 in ERCC2 (P < 0.001), and rs25487 in XRCC1 (P < 0.05); no such correlation existed in rs861539 in XRCC3 (P > 0.05). The study revealed that the more high-risk gene polymorphisms a patient carries, the greater the risk of developing lung cancer. Carriers of rs4646903 in CYP1A1, rs1048943 in CYP1A1, rs1695 in GSTP1, rs13181 in ERCC2, and rs25487 in XRCC1 are more likely to develop lung cancer.
Myostatin, encoded by the MSTN gene, is a negative regulator of muscle growth, and its expression level in muscle tissue is closely correlated with muscle growth and satellite cell proliferation. To identify the characteristics of the Pekin duck MSTN gene and the relationship between its polymorphism and breast muscle traits in Pekin duck, cDNA cloning and analysis and the expression pattern in breast muscle development and polymorphism were performed using molecular cloning, quantitative real-time reverse-transcription polymerase chain reaction, and molecular marker technology. The results showed that a 1320-bp sequence, including a 93-bp 5'-UTR, 1128-bp CDS, and 99- bp 3'-UTR, was obtained, and two alternative splicing isoforms were detected. The alternative splicing isoforms encoded 375- and 251-amino acid residues. The amino acid sequence of Pekin duck MSTN was similar to other vertebrates and exhibited the highest similarity to chicken. The expression pattern of MSTN in breast muscle tissue showed a tendency to increase, except for a slight decrease at 6 weeks. Three single nucleotide polymorphisms were found in the Pekin duck MSTN gene by cDNA sequencing from different individuals. The T129C had significant association with breast muscle thickness, and the T952C had significant association with the fossilia ossis mastodi length. This study reveals the molecular characteristics of the Pekin duck MSTN gene and the relationship of its polymorphism with breast muscle traits in Pekin duck. Therefore, it can provide some useful basic understanding of MSTN functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.