As thermal problems become more evident, new physical design paradigms and tools are needed to alleviate them. Incorporating thermal vias into integrated circuits (ICs) is a promising way of mitigating thermal issues by lowering the thermal resistance of the chip itself. However, thermal vias take up valuable routing space, and therefore, algorithms are needed to minimize their usage while placing them in areas where they would make the greatest impact. With the developing technology of three-dimensional integrated circuits (3D ICs), thermal problems are expected to be more prominent, and thermal vias can have a larger impact on them than in traditional 2D ICs. In this paper, thermal vias are assigned to specific areas of a 3D IC and used to adjust their effective thermal conductivities. The thermal via placement method makes iterative adjustments to these thermal conductivities in order to achieve a desired maximum temperature objective. Finite element analysis (FEA) is used in formulating the method and in calculating temperatures quickly during each iteration. As a result, the method efficiently achieves its thermal objective while minimizing the thermal via utilization.
As the technology node progresses, thermal problems are becoming more prominent especially in the developing technology of three-dimensional (3D) integrated circuits. The thermal placement method presented in this paper uses an iterative force-directed approach in which thermal forces direct cells away from areas of high temperature. Finite element analysis (FEA) is used to calculate temperatures efficiently during each iteration. Benchmark circuits produce thermal placements with both lower temperatures and thermal gradients while wirelength is minimally affected.
Abstract-Advances in the chip fabrication technology have begun to make manufacturing 3D chips a reality. The road ahead presents many challenges both in the technology and the EDA domains before potential benefits of tightly integrated 3D systems can be reaped. We present our placement and routing algorithms for 3D FPGA and ASIC designs. Our method addresses wire length, delay and area minimization, as well as thermal optimization during placement and routing phases. These flows have been used to obtain optimized layouts for benchmarks with tens to hundreds of thousands of cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.