The limited entry of interleukin-1beta (IL-1beta) into the central nervous system has led to the hypothesis that IL-1beta acts, through IL-1beta receptors located notably on endothelial cells, on the release of prostaglandins which in turn stimulate the hypothalamic-pituitary-adrenal (HPA) axis. We used cyclo-oxygenase-1 (COX-1) and cyclo-oxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitors, before the injection of IL-1beta, to explore the role of arachidonic acid metabolic pathways on HPA axis activation. Adult male rats were i.m injected 20 min before i.p injection of IL-1beta, with (i): a COX-1/COX-2 inhibitor (ketoprofen); (ii) a COX-2 selective inhibitor (NS 398); or (iii) a 5-LOX inhibitor (BW A4C). Following this, rats were killed 90 min after i.p. IL-1beta injection and analysis for plasma adrenocorticotropic hormone (ACTH) and corticosterone concentrations and determination of anterior pituitary pro-opio melanocortin (POMC) gene transcription was conducted. Administration of the COX-1/COX-2 inhibitor led to a complete blockage of ACTH and corticosterone secretion and POMC gene transcription. The COX-2 inhibitor led to a complete blockade of ACTH secretion and POMC gene transcription but had no effect on corticosterone secretion. The 5-LOX inhibitor had no significant effect on any parameter. These results demonstrate the crucial role of eicosanoid pathways in mediating the stimulation of the HPA axis induced by IL-1beta. Moreover, we found a clear dissociation of the effect of the blockage of COXs upon ACTH and corticosterone secretion, suggesting that IL-1beta may act at the brain as well as at the adrenal cortex to stimulate the secretion of corticosterone.
In previous paper based on classical pharmacological tools, we identified a Gi protein-coupled presynaptic 5-hydroxytryptamine (5-HT) 1B receptor causing inhibition of dopamine (DA) release in rat striatal synaptosomes. It was the aim of the present study to further explore this receptor, using 5-HT moduline, a polyclonal antibody directed against 5-HT1B receptors and 5-HT1B receptor knock-out mice. Preincubation of rat striatal synaptosomes with 5-HT moduline (0.1, 1, or 10 microM) significantly reduced the inhibitory effect of CP93,129, a selective rat 5-HT1B receptor agonist, on K+-evoked overflow of [3H]DA in a non-competitive manner: 5-HT moduline did not modify the IC50 of CP93,129, but concentration-dependently reduced the maximal inhibitory effect. Preincubation of rat striatal synaptosomes with a specific polyclonal 5-HT1B receptor antibody also resulted in a significant attenuation of the inhibitory effect of CP93,129 on K+-evoked overflow of [3H]DA. In female 129/Sv wild-type mice, CP93,129 and 5-carboxyamidotryptamine maleate (5-CT), a non-selective 5-HT1B receptor agonist, inhibited the K+-evoked [3H]DA overflow in a concentration-dependent manner. Sumatriptan, a selective rat 5-HT1D receptor agonist, did not modify the overflow of [3H]DA. SB224289, a selective 5-HT1B receptor antagonist, abolished the inhibitory effects of CP93,129 and 5-CT. The inhibitory effects of CP93,129 and 5-CT were absent in synaptosomes from 5-HT1B receptor knockout mice. No compensatory inhibition effect in mutant mice was observed using sumatriptan. In conclusion, the results show that a non-competitive antagonist of the 5-HT1B receptor concentration-dependently decreases the maximal inhibitory effect of a 5-HT1B receptor agonist on the synaptosomal K+-evoked release of [3H]DA in striatum. Moreover, a specific antibody raised against the receptor and particularly directed against a region of the receptor protein involved in signal transduction, namely the coupling with the G-protein, also antagonizes the inhibitory effect of the stimulation of 5-HT1B receptor on the release of [3H]DA. Ultimately the disruption of 5-HT1B receptor gene in 5-HT1B knock-out mice leads to a total suppression of the effect of 5-HT1B receptor agonists on [3H]DA release. These observations further support our previous observations using selective agonists/antagonists, indicating that 5-HT1B receptors control the release of neuronal DA as presynaptic heteroreceptors.
The effect of physical exercise was examined on the sensitivity of 5-HT1B receptors and on 5-HT-moduline tissue concentration in the central nervous system of rats. Rats were trained for 7 consecutive weeks to run on a treadmill. Three groups of animals were selected: group 1, sedentary rats (controls); group 2, animals running for 1 h at 18 m/min for 5 days per week (moderate training) and group 3, animals running for 2 h, at 30 m/min on a 7% grade for 5 days per week (intensive training). The animals were sacrificed 24 h after the last running. Rat brains were dissected out to obtain hippocampus and substantia nigra and kept at -80 degrees C until use. 5-HT1B receptor activity was determined by studying [35S]GTPgammaS binding in a substantia nigra membrane preparation from individual animals, after stimulation by a selective 5-HT1B receptor agonist (CP 93,129). 5-HT-moduline tissue content in hippocampus from individual animals was determined by ELISA using a polyclonal anti-5-HT-moduline antibody. In moderately trained animals (n=5), the CP 93,129-stimulated [35S]GTPgammaS binding curve was shifted to the right compared with controls (n=6), whereas the binding was totally suppressed in intensely trained animals (n=5). In parallel, 5-HT-moduline tissue concentration in the hippocampus was slightly increased in moderately trained animals (117.3 +/- 8.9%) (n=5), whereas it was significantly increased in intensely trained animals (182.6 +/- 29.5%) (n=5) compared to controls (100 +/- 6.11%) (n=6). These results show that 5-HT1B receptors are slightly desensitized in moderately trained animals and totally desensitized in intensely trained animals; moreover, they suggest that the observed desensitization is related to an increase of 5-HT-moduline tissue content; this mechanism may play a role in various pathophysiological conditions.
We have determined the pharmacological characteristics of the rat 5-ht6 receptor stably expressed in CHO cells. Moreover, using RT-PCR experiments the in vivo expression of the gene encoding this receptor was studied in rat at various embryonic days (ED) starting from ED10 to birth (PN0) and at post-natal days (PN) up to PN36. The pharmacological analysis of the [3H]5-HT binding in stably transfected CHO cells expressing rat 5-ht6 receptors revealed the presence of a single class of high affinity saturable binding sites for 5-HT corresponding to an affinity constant: Kd=27.2+/-3.4 nM. This receptor also exhibited a high affinity for a number of typical and atypical antipsychotics, tricyclic antidepressant drugs and ergot alkaloïds. In stably transfected CHO cells, serotonin elicited a potent stimulation of adenylyl cyclase activity which was blocked by antipsychotic and antidepressant drugs. These results confirm the hypothesis that 5-ht6 receptors may correspond to an important target for atypical antipsychotics and reveal an original pharmacological profile for this receptor. The study of the ontogeny of the 5-ht6 mRNA in rat developing brain showed that 5-ht6 mRNA were first detectable with a high level on ED12, slighly decreased up to ED17 and then remained stable at high level until the adult age. The ontogenetic pattern of 5-ht6 mRNA expression appeared to correlate with the occurence of the first cell bodies of serotonergic neurons; the early expression of 5-ht6 mRNA and the fact that this receptor is positively coupled to the production of cAMP may suggest a role for 5-ht6 receptor in the early growth process involving the serotonergic system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.