The proposed introduction of genetically modified herbicide tolerant (GMHT) crops, with claims of improved weed control, has prompted fears about possible environmental impacts of their widespread adoption, particularly on arable weeds, insects and associated farmland birds. In response to this, we have developed a novel weed-management system for GMHT sugar beet, based on band spraying, which exploits the flexibility offered by the broad-spectrum partner herbicides. Here, we show the results from two series of field experiments which, taken together, demonstrate that, by using this system, crops can be managed for enhanced weed and insect biomass without compromising yield, thus potentially offering food and shelter to farmland birds and other wildlife. These results could be applicable widely to other row crops, and indicate that creative use of GMHT technology could be a powerful tool for developing more sustainable farming systems in the future.
The effects of the management of genetically modified herbicide-tolerant (GMHT) crops on the abundances of aerial and epigeal arthropods were assessed in 66 beet, 68 maize and 67 spring oilseed rape sites as part of the Farm Scale Evaluations of GMHT crops. Most higher taxa were insensitive to differences between GMHT and conventional weed management, but significant effects were found on the abundance of at least one group within each taxon studied. Numbers of butterflies in beet and spring oilseed rape and of Heteroptera and bees in beet were smaller under the relevant GMHT crop management, whereas the abundance of Collembola was consistently greater in all GMHT crops. Generally, these effects were specific to each crop type, reflected the phenology and ecology of the arthropod taxa, were indirect and related to herbicide management. These results apply generally to agriculture across Britain, and could be used in mathematical models to predict the possible long-term effects of the widespread adoption of GMHT technology. The results for bees and butterflies relate to foraging preferences and might or might not translate into effects on population densities, depending on whether adoption leads to forage reductions over large areas. These species, and the detritivore Collembola, may be useful indicator species for future studies of GMHT management.
The effects of herbicide management of genetically modified herbicide-tolerant (GMHT) beet, maize and spring oilseed rape on the abundance and diversity of soil-surface-active invertebrates were assessed. Most effects did not differ between years, environmental zones or initial seedbanks or between sugar and fodder beet. This suggests that the results may be treated as generally applicable to agricultural situations throughout the UK for these crops. The direction of the effects was evenly balanced between increases and decreases in counts in the GMHT compared with the conventional treatment. Most effects involving a greater capture in the GMHT treatments occurred in maize, whereas most effects involving a smaller capture were in beet and spring oilseed rape. Differences between GMHT and conventional crop herbicide management had a significant effect on the capture of most surface-active invertebrate species and higher taxa tested in at least one crop, and these differences reflected the phenology and ecology of the invertebrates. Counts of carabids that feed on weed seeds were smaller in GMHT beet and spring oilseed rape but larger in GMHT maize. In contrast, collembolan detritivore counts were significantly larger under GMHT crop management.
1. Changes in insect biomass, abundance, and diversity are challenging to track at sufficient spatial, temporal, and taxonomic resolution. Camera traps can capture habitus images of ground-dwelling insects. However, currently sampling involves manually detecting and identifying specimens. Here, we test whether a convolutional neural network (CNN) can classify habitus images of ground beetles to species level, and estimate how correct classification relates to body size, number of species inside genera, and species identity.2. We created an image database of 65,841 museum specimens comprising 361 carabid beetle species from the British Isles and fine-tuned the parameters of a pretrained CNN from a training dataset. By summing up class confidence values within genus, tribe, and subfamily and setting a confidence threshold, we trade-off between classification accuracy, precision, and recall and taxonomic resolution.3. The CNN classified 51.9% of 19,164 test images correctly to species level and 74.9% to genus level. Average classification recall on species level was 50.7%.Applying a threshold of 0.5 increased the average classification recall to 74.6% at the expense of taxonomic resolution. Higher top value from the output layer and larger sized species were more often classified correctly, as were images of species in genera with few species. 4. Fine-tuning enabled us to classify images with a high mean recall for the whole test dataset to species or higher taxonomic levels, however, with high variability.This indicates that some species are more difficult to identify because of properties such as their body size or the number of related species.5. Together, species-level image classification of arthropods from museum collections and ecological monitoring can substantially increase the amount of occurrence data that can feasibly be collected. These tools thus provide new opportunities in understanding and predicting ecological responses to environmental change. Jens-Christian Svenninghttps://orcid.
The pelidnotine scarabs (Scarabaeidae: Rutelinae: Rutelini) are a speciose, paraphyletic assemblage of beetles that includes spectacular metallic species (“jewel scarabs”) as well as species that are ecologically important as herbivores, pollinators, and bioindicators. These beetles suffer from a complicated nomenclatural history, due primarily to 20th century taxonomic and nomenclatural errors. We review the taxonomic history of the pelidnotine scarabs, present a provisional key to genera with overviews of all genera, and synthesize a catalog of all taxa with synonyms, distributional data, type specimen information, and 107 images of exemplar species. As a result of our research, the pelidnotine leaf chafers (a paraphyletic group) include 27 (26 extant and 1 extinct) genera and 420 valid species and subspecies (419 extant and 1 extinct). Our research makes biodiversity research on this group tractable and accessible, thus setting the stage for future studies that address evolutionary and ecological trends. Based on our research, 1 new species is described, 1 new generic synonym and 12 new species synonyms are proposed, 11 new lectotypes and 1 new neotype are designated, many new or revised nomenclatural combinations, and many unavailable names are presented. The following taxonomic changes are made:New generic synonym: The genus Heteropelidnota Ohaus, 1912 is a new junior synonym of Pelidnota MacLeay, 1819.New species synonyms: Plusiotis adelaida pavonacea Casey, 1915 is a syn. n. of Chrysina adelaida (Hope, 1841); Odontognathus gounellei Ohaus, 1908 is a revised synonym of Pelidnota ebenina (Blanchard, 1842); Pelidnota francoisgenieri Moore & Jameson, 2013 is a syn. n. of Pelidnota punctata (Linnaeus, 1758); Pelidnota genieri Soula, 2009 is a syn. n. of Pelidnota punctata (Linnaeus, 1758); Pelidnota lutea (Olivier, 1758) is a revised synonym of Pelidnota punctata (Linnaeus, 1758); Pelidnota (Pelidnota) texensis Casey, 1915 is a revised synonym of Pelidnota punctata (Linnaeus, 1758); Pelidnota (Strigidia) zikani (Ohaus, 1922) is a revised synonym of Pelidnota tibialis tibialis Burmeister, 1844; Pelidnota ludovici Ohaus, 1905 is a syn. n. of Pelidnota burmeisteri tricolor Nonfried, 1894; Rutela fulvipennis Germar, 1824 is syn. n. of Pelidnota cuprea (Germar, 1824); Pelidnota pulchella blanda Burmeister, 1844 is a syn. n. of Pelidnota pulchella pulchella (Kirby, 1819); Pelidnota pulchella scapularis Burmeister, 1844 is a syn. n. of Pelidnota pulchella pulchella (Kirby, 1819); Pelidnota xanthogramma Perty, 1830 is a syn. n. of Pelidnota pulchella pulchella (Kirby, 1819).New or revised statuses: Pelidnota fabricelavalettei Soula, 2009, revised status, is considered a species; Pelidnota rioensis Soula, 2009, stat. n., is considered a species; Pelidnota semiaurata semiaurata Burmeister, 1844, stat. rev., is considered a subspecies.New or comb. rev. and revised status: Plusiotis guaymi Curoe, 2001 is formally transferred to the genus Chrysina (C. guaymi (Curoe, 2001), comb. n.); Plusiotis transvolcanica Morón & Nogueir...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.