We extend the well-known analogy between the problems of paraxial diffraction in space and dispersion in time to optical pulse compression and propose a time-domain analog to spatial imaging that allows for the distortionless expansion or compression of optical power waveforms. We call this new concept temporal imaging and derive equivalent expressions for the focal length and the f-number of a time lens and the magnification of an imaging system. It should now become possible, with a temporal microscope, to expand ultrafast optical phenomena to a time scale that is accessible to conventional high-speed photodiodes.
We describe techniques for making sensitive and high-dynamic-range measurements of laser amplitude and envelope phase noise (timing jitter) in the frequency domain at the shot-noise limit. Examples of amplitude noise measurements on continuous-wave argon-ion and diode-pumped solid-state lasers used for pumping a femtosecond Ti : sapphire laser are presented. Amplitude and phase noise measurements for the Ti : sapphire laser are also presented, showing correlation between pump laser amplitude modulation (AM) spectra and the resulting AM and phase noise. Characteristics of the measurement system components are discussed, along with examples of the impact these have on achieving reliable high-dynamic-range measurement capability.
We present the operational principles and results of a temporal imaging system, configured as a time microscope, that achieves 103 x magnification of waveforms with 300-fs resolution and a 5.7-ps field of view. The quadratic-phase time-lens element is realized by upconversion of the dispersed input waveform with a linearly chirped 5-THz bandwidth pump. The system allows expansion of ultrafast optical waveforms to a time scale that is directly accessible with slower conventional technology, in real time, on a single-shot basis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.