We developed a 2.5 ×6.6 mm 2 -D array transducer with integrated transmit/receive application-specific integrated circuit (ASIC) for real-time 3-D intracardiac echocardiography (4-D ICE) applications. The ASIC and transducer design were optimized so that the high-voltage transmit, low-voltage time-gain control and preamp, subaperture beamformer, and digital control circuits for each transducer element all fit within the 0.019-mm area of the element. The transducer assembly was deployed in a 10-Fr (3.3-mm diameter) catheter, integrated with a GE Vivid E9 ultrasound imaging system, and evaluated in three preclinical studies. The 2-D image quality and imaging modes were comparable to commercial 2-D ICE catheters. The 4-D field of view was at least 90 ×60 ×8 cm and could be imaged at 30 vol/s, sufficient to visualize cardiac anatomy and other diagnostic and therapy catheters. 4-D ICE should significantly reduce X-ray fluoroscopy use and dose during electrophysiology ablation procedures. 4-D ICE may be able to replace transesophageal echocardiography (TEE), and the associated risks and costs of general anesthesia, for guidance of some structural heart procedures.
Vibro-acoustography is an ultrasound-based imaging modality that uses two ultrasound beams of slightly different frequencies to produce images based on the acoustic response due to harmonic ultrasound radiation force excitation at the difference frequency between the two ultrasound frequencies. Vibro-acoustography has demonstrated feasibility and usefulness in imaging of breast and prostate tissue. However, previous studies have been performed either in controlled water tank settings or a prototype breast scanner equipped with a water tank. In order to make vibro-acoustography more accessible and relevant to clinical use, we report here on the implementation of vibro-acoustography on a General Electric Vivid 7 ultrasound scanner. In this paper, we will describe software and hardware modifications that were performed to make vibro-acoustography functional on this system. We will discuss aperture definition for the two ultrasound beams and beamforming using a linear array transducer. Experimental results from beam measurements and phantom imaging studies will be shown. The implementation of vibro-acoustography provides a step towards clinical translation of this imaging modality for applications in various organs including breast, prostate, thyroid, kidney, and liver.
are associated with pulse compression methods Abstract --_ Range sidelobe artifacts which can be reduced with a new method composed of Pulse Elongation and Deconvolution (PED). Both approaches yield similar signal-to-noise ratio (SNR) improvements. The deconvolution is implemented as a stabilized inverse filter. The mean square error (MMSE) sense. An analytlcal excitation wave form is optimized in a minimum expression for the power spectrum of the optimal pulse is presented and several techniques t o numerically optimize the excitation pulse are shown. The effects of FED well as ultrasonic images.are demonstrated in computer simulations as
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.