Several hormonal systems participating in body fluid and electrolyte homeostasis were investigated in six healthy volunteers in a supine body position during a period of 9 days and nights. Under strictly controlled conditions, striking circadian rhythms were observed for plasma levels of vasopressin, renin, aldosterone, guanosine 3',5'-cyclic monophosphate, cortisol, and epinephrine. Nocturnal decreases and diurnal increases in urine flow rate and urinary excretion of electrolytes were observed and closely paralleled the urinary excretion of urodilatin. During 48 h after an acute isotonic saline infusion (2 liters within 25 min) and after a 48-h control experiment the urinary excretion of H2O and electrolytes, and simultaneously the alterations in endocrine systems participating in body fluid homeostasis, were determined. Urine flow and urinary electrolyte excretion rates were significantly increased during 2 days after the saline infusion. The largest increase in urinary fluid and electrolyte excretion was observed between 3 and 22 h postinfusion. These long-term changes were paralleled by altered H2O and Na balances and also by elevated body weights that returned to baseline values with an approximate half-life of 7 h. These data suggest that vasopressin, atrial natriuretic peptide, and catecholamines are unlikely to be of major importance for the renal response to this hypervolemic stimulus. The renin-aldosterone system was suppressed during 2 days postinfusion. This suppression correlated with the effects of saline load on Na excretion. However, the closest relation with Na excretion was observed for the kidney-derived member of the atrial natriuretic peptide family, urodilatin, which was considerably increased during the long-term period up to 22 h postinfusion. Thus these data show that the human body in supine position requires approximately 2 days to regulate the amount of Na and H2O provided by an acute saline infusion. The data also suggest that urodilatin and the renin-aldosterone system might participate in the long-term renal response to an acute saline infusion and also in the mediation of circadian urinary excretion rhythms.
To see whether strenuous prolonged exertion increases blood platelet activation and thrombin activity in healthy well-trained men, 16 male amateur runners (mean age 31,8) were studied. A marathon race (mean time 2 h 44 min 30 s) caused a significant increase in plasma beta-thromboglobulin (beta-TG), platelet factor 4 (PF4), fibrinopetide A (FPA) and factor VIII (F VIII) activity. Sixty min after exertion beta-TG and F VIII activity were still significantly elevated. FPA continued to rise, reaching peak values 60 min after the run. 22 h after finishing the race F VIII activity was still significantly elevated. The study has demonstrated the great inter-individual variability of marathon race-induced haemostatic changes. The elevation of beta-TG varied from 42% to 156%, F VIII from 112% to 625%, and in three runners FPA reached more than 900% of its pre-exercise value. In some individuals the haemostatic changes observed could be potentially unfavourable for coronary heart disease prevention.
The effect of a test marathon race on plasma fibrinolytic activity (FA) was studied in 16 endurance athletes before, immediately after, 3 h, and 31 h after the run. Tissue plasminogen activator (t-PA) activity increased about 31-fold immediately after the run. Similar increases were found in t-PA antigen concentration. Plasminogen activator inhibitor (PAI) was not detectable immediately after the race and was significantly decreased 3 h (P less than 0.05) and 31 h (P less than 0.01) later. B beta 15-42 peptide increased by 0.63 pmol.ml-1 (P less than 0.001), D-dimer by 68.3 ng.ml-1 (P less than 0.05). Euglobulin lysis time (ELT) was reduced from 109 to 18 min (P less than 0.001). The increased t-PA activity and t-PA antigen concentration disappeared in the course of the first 3 h after exertion. ELT also reached its pre-exercise levels at this time. Thirty-one hours after the race ELT and t-PA antigen levels were slightly but significantly reduced (P less than 0.05), whereas B beta 15-42 peptide remained increased (P less than 0.05). t-PA activity was unchanged compared with pre-exercise values. It seems that the exercise-induced FA is mainly caused by the marked increase of t-PA antigen and t-PA activity.
Erythropoietin (EPO) and red blood cells were studied in 15 well-trained men before and several times after a marathon run. Changes in red blood cells reflected changes of plasma volume. Immediately after the run, red blood cells were increased due to haemoconcentration, whereas 31 h later the values were decreased due to haemodilution. The EPO concentration was increased 3 h, and more impressive 31 h, after the run. This long-lasting increase in EPO concentration after the marathon run would seem to be responsible for the increased red blood cell mass in long distance runners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.