Using the CLEO II detector, we have measured the differential cross sections for exclusive two-photon production of light pseudoscalar mesons 0 , , and Ј. From our measurements we have obtained the form factors associated with the electromagnetic transitions ␥*␥→meson. We have measured these form factors in the momentum transfer ranges from 1.5 to 9, 20, and 30 GeV 2 for 0 , , and Ј, respectively, and have made comparisons to various theoretical predictions. ͓S0556-2821͑98͒01001-7͔
Using 20.7 pb −1 of e + e − annihilation data taken at √ s = 3.671 GeV with the CLEO-c detector, precision measurements of the electromagnetic form factors of the charged pion, charged kaon, and proton have been made for timelike momentum transfer of |Q 2 | = 13.48 GeV 2 by the reaction e + e − → h + h − . The measurements are the first ever with identified pions and kaons of |Q 2 | > 4 GeV 2 , with the results F π (13.48 GeV 2 ) = 0.075 ± 0.008(stat) ± 0.005(syst) and F K (13.48 GeV 2 ) = 0.063±0.004(stat)±0.001(syst). The result for the proton, assumingGeV 2 ) = 0.014 ± 0.002(stat) ± 0.001(syst), which is in agreement with earlier results.
Using 13.5 fb Ϫ1 of e ϩ e Ϫ annihilation data collected with the CLEO II detector, we have observed a narrow resonance decaying to D s * ϩ 0 with a mass near 2.46 GeV/c 2. The search for such a state was motivated by the recent discovery by the BaBar Collaboration of a narrow state at 2.32 GeV/c 2 , the D sJ * (2317) ϩ , that decays to D s ϩ 0. Reconstructing the D s ϩ 0 and D s * ϩ 0 final states in CLEO data, we observe peaks in both of the corresponding reconstructed mass difference distributions, ⌬M (D s 0)ϭM (D s 0)ϪM (D s) and ⌬M (D s * 0)ϭM (D s * 0)ϪM (D s *), both of them at values near 350 MeV/c 2. We interpret these peaks as signatures of two distinct states, the D sJ * (2317) ϩ plus a new state, designated as the D sJ (2463) ϩ. Because of the similar ⌬M values, each of these states represents a source of background for the other if photons are lost, ignored or added. A quantitative accounting of these reflections confirms that both states exist. We have measured the mean mass differences ͗⌬M (D s 0)͘ϭ350.0Ϯ1.2 (stat)Ϯ1.0 (syst) MeV/c 2 for the D sJ * (2317) ϩ state, and ͗⌬M (D s * 0)͘ϭ351.2Ϯ1.7 (stat)Ϯ1.0 (syst) MeV/c 2 for the new D sJ (2463) ϩ state. We have also searched, but find no evidence, for decays of the two states via the channels D s * ϩ ␥, D s ϩ ␥, and D s ϩ ϩ Ϫ. The observations of the two states at 2.32 and 2.46 GeV/c 2 , in the D s ϩ 0 and D s * ϩ 0 decay channels, respectively, are consistent with their interpretations as cs mesons with an orbital angular momentum Lϭ1 and spin and parity J P ϭ0 ϩ and 1 ϩ .
CLEO has studied B decays to the nal states ` , ` , and !` , wherè = e or. We fully reconstruct these modes using a measurement of the missing energy and momentum in each event to infer the neutrino momentum. With the B 0 and B + modes combined according to isospin predictions for the relative partial widths, we obtain B(B 0 ! ?`+) = (1:8 0:4 0:3 0:2) 10 ?4 and B(B 0 ! ?`+) = (2:5 0:4 +0:5 ?0:7 0:5) 10 ?4 , where the errors are statistical, systematic and the estimated model-dependence. We also estimate jV ub j = (3:3 0:2 +0:3 ?0:4 0:7) 10 ?3 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.