Intense geomagnetic storms offer opportunity to understand ionospheric response to space weather events. Using Total Electron Content (TEC) data from stations along the east African sector, the two most intense storms during the 24th solar cycle, with similarly occurrence season and time were studied. We observe that ionospheric effect during the main phase is not a function of the severity of the storm, whereas the more intense storm shows greater influence on the African ionosphere during the recovery phase. Plasma movement within the equatorial ionization anomaly (EIA) was evident particularly during the recovery phase, especially during the 2015 event. For both storms, the nighttime/early morning ionospheric effect is more pronounced than the daytime effects across all stations.
A short review of the pattern and morphology of the equatorial plasma drift velocities, particularly during the evening-time Pre-reversal enhancement (PRE) period in the African region had been presented. The seasonal PRE peak values across some locations in the West-African region were considered and compared with other sectors of the world. While most plasma drift observations in the African region were calculated from ionosonde measurements, the observations from other sectors involved direct measurement from satellite and the Incoherent Scatter Radar (ISR) observations. The importance of the PRE in ionospheric electrodynamics was highlighted, the better in the use of either the virtual or real heights of the F-layer in inferring vertical drift velocities were enumerated, revealing the strengths and weakness of each method. The general observations revealed that PRE peak magnitude is commonly weaker in the African region in comparison with the American/Peruvian and Indian sectors, seasonal and solar activity dependent, and could be higher during either magnetic quiet or disturbed activity than when both magnetic activity conditions are combined. The first work to present a regional PRE model around the African equatorial ionization anomaly region (Adebesin et al model) was mentioned. The relevance of the E × B drift in quantifying the daytime equatorial electrojet (EEJ) current was also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.