We analyse by means of transmission electron microscopy (TEM) and atomic force microscopy (AFM) the strain relaxation mechanisms in InGaN layers on GaN as dependent on the In content. At the experimentally given thickness of 100 nm, the layers remain coherently strained, up to an In concentration of 14 %. We show that part of the strain is reduced elastically by formation of hexagonally facetted pinholes. First misfit dislocations are observed to form at pinholes that reach the InGaN/GaN interface. We discuss these results in the framework of the Matthews-Blakeslee model for the critical thickness considering the Peierls force for glide of threading dislocations in the different slip systems of the wurtzite lattice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.