A powerful decoupling method is introduced to obtain decoupled signal voltages from quadrature coils in magnetic resonance imaging (MRI). The new method uses the knowledge of the position of the signal source in MRI, the active slice, to define a new mutual impedance which accurately quantifies the coupling voltages and enables them to be removed almost completely. Results show that by using the new decoupling method, the percentage errors in the decoupled voltages are of the order of 10(-7) % and isolations between two coils are more than 170 dB.
In this work, a new design concept in chest imaging for MRI application is presented. A focused, 8-element transceive torso phased array coil is designed to investigate transmitting focused B/sup 1/ field deep within the torso to enhance signal intensity and use in conjunction with SENSE reconstruction technique. Hybrid FDTD/MOM method is used to accurately predict the RF behavior inside the human torso. The simulation results reported herein demonstrate the feasibility of the design concept which shows that B/sub 1/ field focusing with SENSE reconstruction is achievable, and the 8-element transceive torso phased array coil has the advantage to be used in transmit and receive mode for optimum and fast chest imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.