The purposes of this study were to determine whether heparin would block human cytomegalovirus (HCMV) infection of skin fibroblast (SF) cells and to identify HCMV envelope glycoproteins which might have affinity for heparin. It was determined that soluble heparin in concentrations of 5 to 20 jg/ml was capable of blocking HCMV infection of SF cells. However, after virus had adsorbed to the SF cells, heparin lost its ability to block infection. It was also determined that treatment of SF cells with heparinase to remove cell surface heparinlike moieties prevented HCMV infection of SF cells. These data showed that HCMV, like other herpesviruses,
Several disulfide-linked glycoprotein complexes were identified in the envelope of human cytomegalovirus (HCMV). These glycoprotein complexes were fractionated by rate-zonal centrifugation in sucrose density gradients in the presence of detergents. Fractionated glycoproteins and complexes were immunoprecipitated with three different monoclonal antibodies specific for HCMV glycoproteins and a rabbit polyclonal antiserum prepared against detergent-extracted virion and dense-body envelope glycoproteins. Three distinct families of disulfide-linked glycoprotein complexes were observed and designated glycoprotein complex gcl, gcII, and gcII1. The gcl family, recognized by monoclonal antibody 41C2 under nonreducing conditions, consisted of three complexes with approximate molecular masses of 250 to 300, 190, and 160 kilodaltons (kDa). These complexes consistently sediment more rapidly than other HCMV glycoproteins or complexes in sucrose density gradients. Upon reduction of the gcl family, two size classes of glycoproteins with average molecular masses of 93 to 130 and 55 kDa were observed. The gcII family was recognized by monoclonal antibody 9E10. Under nonreducing conditions, as many as six electrophoretic forms were observed for gcII. When reduced, the major component of the gcII family was a heterogeneous glycoprotein designated gp47-52. The gcIII family was recognized by monoclonal antibody 1G6. It consisted of a complex of approximately 240 kDa without reduction of disulfide bonds. When reduced, two glycoprotein size classes with average molecular masses of 145 and 86 kDa were observed. Polyclonal antiserum R-7 reacted strongly with the gcI and gcIII families, but weakly with the gcII family.
Targeted disruption of the histidine decarboxylase gene (HDC ؊/؊ ), the only histamine-synthesizing enzyme, led to a histamine-deficient mice characterized by undetectable tissue histamine levels, impaired gastric acid secretion, impaired passive cutaneous anaphylaxis, and decreased mast cell degranulation. We used this model to study the role of histamine in bone physiology. Compared with WT mice, HDC ؊/؊ mice receiving a histamine-free diet had increased bone mineral density, increased cortical bone thickness, higher rate of bone formation, and a marked decrease in osteoclasts. After ovariectomy, cortical and trabecular bone loss was reduced by 50% in HDC ؊/؊ mice compared with WT. Histamine deficiency protected the skeleton from osteoporosis directly, by inhibiting osteoclastogenesis, and indirectly, by increasing calcitriol synthesis. Quantitative RT-PCR showed elevated 25-hydroxyvitamin D-1␣-hydroxylase and markedly decreased 25-hydroxyvitamin D-24-hydroxylase mRNA levels. Serum parameters confirming this indirect effect included elevated calcitriol, phosphorus, alkaline phosphatase, and receptor activator of NF-B ligand concentrations, and suppressed parathyroid hormone concentrations in HDC ؊/؊ mice compared with WT mice. After ovariectomy, histamine-deficient mice were protected from bone loss by the combination of increased bone formation and reduced bone resorption.
Three monoclonal antibodies were characterized by examining their reactivity to human cytomegalovirus (HCMV) glycoproteins under reducing and nonreducing conditions and their reactivity to glycoproteins and disulfide-linked glycoprotein complexes isolated by ion-exchange high-performance liquid chromatography. One monoclonal antibody, 9E10, reacted with glycoprotein complexes which had molecular weights of 93,000 and 450,000 and eluted from the ion-exchange column at 0.3 and 0.9 M NaCl, respectively. All glycoproteins associated in these complexes could be immunoprecipitated under reducing conditions by 9E10, suggesting that they were related to one another. The most abundant glycoproteins immunoprecipitated by 9E10 had molecular weights of 50,000 to 52,000. In contrast to this antibody, two other monoclonal antibodies, 9B7 and 41C2, reacted with glycoprotein complexes which had molecular weights of 130,000 and >200,000 and eluted from the ion-exchange column at 0.6 M NaCl. All glycoproteins associated in these complexes could be immunoprecipitated by 9B7 or 41C2 under reducing conditions, suggesting that they were also related to one another. The most abundant glycoprotein immunoprecipitated by 41C2 or 9B7 had a molecular weight of 93,000. In addition, it was also determined that a 93,000-molecular-weight glycoprotein which was not associated with other glycoproteins by disulfide bonds could not be precipitated by any of the three antibodies, suggesting that it was different from the other glycoproteins. The monoclonal antibodies were also examined for specificity and neutralizing activity. Monoclonal antibodies 41C2 and 9B7 were specific to HCMV as determined by immunofluorescent staining of skin fibroblast cells infected with several different viruses. However, 41C2 did not neutralize Towne strain HCMV, while 9B7 did. The neutralizing activity of 9B7 did require compliment. These results suggested that 41C2 and 9B7 reacted with different antigenic sites on the same glycoproteins. Unlike 41C2 and 9B7, monoclonal antibody 9E10 was found to cross-react with adenovirus and herpes simplex virus as determined by immunofluorescent staining of infected skin fibroblast cells. Furthermore, 9E10 neutralized the Towne and Toledo strains of HCMV in the absence of complement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.