The Mesaverde Group consists of a thick wedge of fluvial, littoral-deltaic and shallow marine clastics shed into the Cretaceous Western Interior Seaway of North America. The western parts of the seaway lay within the strongly subsiding foredeep of the active Sevier fold and thrust belt further to the west. The study area is located east of the axis of maximum subsidence and is thus in a favourable position to record competing effects of eustasy, sediment supply and thrust-load induced subsidence. Facies and sequence analysis carried out on high quality outcrop and well log data led to the recognition of a complex depositional cycle hierarchy within the typical storm-and wavedominated inner shelf/shoreface/strand plain and delta systems of the Mesaverde.Fourth-order parasequences and parasequence bundles of estimated 1 0 0 -4 0 0 k a duration are the best recognizable, ubiquitous and most useful stratigraphic units. Their arrangement with respect to sequence boundaries, however, varies with their overall stratigraphic position and also differs from the Exxon models. Mesaverde progradation was interrupted by a major transgression that occurred out of phase with the aggradational to progradational stacking trend of third-order sequences. A proposed genetic model relates large-scale (secondorder) sequence architecture to tectonics: a Sevier thrust event as well as Laramide uplift within the foredeep controlled non-linear changes in the accommodation/supply ratio. Parasequence stacking patterns and sequence boundary formation, in contrast, were the product of (global?) eustasy enhanced by short-term, perhaps local, changes in the rates of subsidence and detrital influx.
In-situ δ18O measured in the quartz overgrowths help identify temperature and fluid origin variations responsible for cementation of the pore network (matrix and fracture) in the Buntsandstein Gp. sandstone reservoirs within the Upper Rhine Graben. The overgrowths record two types of the evolution of δ18O: 1) a monotonous decrease of the δ18Oovergrowth interpreted as linked to an increasing burial temperature and 2) random fluctuations, interpreted as pointing out the injection of allochthonous fluids in faulted areas, on the cementation processes of the pore network (both intergranular and fracture planes). Fluids causing the quartz cementation are either autochthonous buffered in 18O from clay illitisation; or allochthonous fluids of meteoric origin with δ18O below − 5%. These allochthonous fluids are in thermal disequilibrium with the host sandstone. The measured signal of δ18Oovergrowth measured from samples and calculated curves testing hypothetic δ18Ofluid are compared to T–t evolution during burial. This modelling proposes the initiation of quartz cementation during the Jurassic and is validated by the in-situ 40Ar/39Ar dating results obtained on the feldspar overgrowths predating quartz overgrowths. A similar diagenetic history is recorded on the graben shoulders and in the buried parts of the basin. Here, the beginning of the pore network cementation predates the structuration in blocks of the basin before the Cenozoic graben opening.
Deeply buried sandstone reservoirs are targeted in the Upper Rhine Graben (URG) for geothermal and hydrocarbon resources. These reservoirs, which are located at the top of the geothermal convective cells, have a complex diagenetic and structural history recorded by paragenesis. Here the focus is made on the characterization of carbonates and barite cementations which trace paleo geothermal circulations within the fracture network affecting the sandstones. These mineralizations are studied with a double approach on geochemistry and structural, faults and associated fracture network, to characterize fluid-flow episodes on different structural positions in the rift basin and its shoulders. Barite sulphur isotopic ratios suggest a common signature and source for all the locations. REE patterns, oxygen isotopic ratios, and fluid inclusion study suggest though two regimes of fluid flow forming barite, depending on their location. On the graben shoulders the barite have a higher content in total REE and contain non-saline fluids inclusions, suggesting that fluid circulations at the graben border faults interact with sulphate rich layers, and precipitate at high temperatures .In -deep-seated sandstones, fluid inclusions in barites show a wide range of salinities, suggesting a higher contribution of sedimentary brines, and precipitation at lower temperatures. These barite mineralizations are associated with carbonates and apatite with a diagenetic origin, according to their REE signature. These data are used to build a model for fluids circulation within the graben: Fast and deep down- and up-flows are taking place along the major border faults, which are leaching evaporitic horizons, and precipitates from geothermal fluid during fault activity. A part of these deep-down meteoric waters is reaching the centre of the basin. In this central part of the basin, fluid circulation is slower and restricted to the bottom of the basin, where fluid-mixing with sedimentary brines occurs. This new understanding of fluid pathways in the targeted reservoir brings new insights on the compartmentalization of geothermal circulations at the basin scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.