кандидат физико-математических наук, доцент Б.М. Кумицкий 1 , кандидат физико-математических наук Н.А. Саврасова 2 , кандидат технических наук, доцент Е.В. Кантиева 3 1-ФГБОУ ВО «Воронежский государственный технический университет» г. Воронеж, Российская Федерация 2-ВУНЦ ВВС «ВВА имени профессора Н.Е. Жуковского и Ю.А. Гагарина» г. Воронеж, Российская Федерация 3-ФГБОУ ВО «Воронежский государственный лесотехнический университет» г. Воронеж, Российская Федерация В целях повышения качества производимой фанеры, древесно-слоистого материала разработана математическая модель, описывающая склеивание древесного шпона в условиях плоского прессования. В основе предлагаемой модели лежат процессы, протекающие в вязкой (ньютоновской) несжимаемой жидкости, находящейся в слое между двумя движущимися навстречу друг другу плоскопараллельными плоскостями конечных размеров. В рамках принципов механики сплошной среды в условиях плоского деформированного состояния, отсутствия объемных сил и инерционных эффектов (малая скорость смыкания плит пресса) совместно решаются уравнения вязкости и неразрывности связующей жидкости. Полученное при этом уравнение Лапласа для давления решалось методом полиномов. Это позволило получить напряженно-деформированное состояние исследуемой жидкости в плоскости скольжения, результаты которого позволяют управлять параметрами давления и скорости прессования при склеивании шпона. Кроме того, получены аналитические выражения для кинематических характеристик клеевой массы: распределение скоростей по плоскости скольжения, позволяющее качественное построение линий тока, касательные к которым совпадают с направлением скорости течения. При измененных условиях нагружения получена формула для определения времени прессования и коэффициента вязкости клея. Предлагаемая математическая модель может быть использована для описания физических процессов, протекающих при прессовании не только фанеры, но и других многослойных клееных материалов: бумажно-слоистых пластиков, сэндвич-панелей и др.
The article discusses the formation and development of the Faculty of Mechanics from the moment of its creation to the present. The material on the creation of departments of the faculty is presented. The main historical moments of their formation are reflected. The biography of the staff of the departments, who have made a significant contribution to the development of the departments of the faculty, is presented. The department of forestry mechanization was organized in 1937. The scientists of the department take an active part in solving many problems in the forestry industry, forestry and protective afforestation, in the development of machines and tools. The department gave a start in science to many scientists working in research institutions, design organizations, industrial enterprises and universities of the forest profile. The Department of Automation of Industrial Processes has existed since 1975. The staff of the department is actively introducing their scientific developments into the practice of forestry complex: systems for automatic regulation of the processes of forest seed drying, growing forest planting material in closed ground, pneumatic transport of technological chips, systems for automatic control and management of the production of round timber, plywood and other developments. The Department of Computer Engineering and Information Systems spun off from the Department of Automation of Industrial Processes in 1992, as the Department of Computer Engineering, since 2008 it bears its current name. The main scientific activity is work in the field of creating a highly reliable radiation-resistant electronic component base and the development of methods of system analysis and information technologies for their support. The Department of General and Applied Physics was founded in 1949. The lecturers of the department studied the electrical conductivity of wood materials, the properties of thin layers of liquids during impregnation and filtration, molecular acoustics, and forest biogeophysics. In the current period, the main direction of work is related to the study of the response of high-molecular, biopolymer composite and other materials to the effect of physical fields of various natures. The Department of Life Safety and Legal Relations was founded in 1973. The research work of the department was aimed at finding ways and means to improve labor safety, environmental protection and protection of the population in the event of emergencies. Currently, the research work of the department is aimed at solving labor safety problems in the forest and woodprocessing complex
Statement of the problem. The article examines the problem of cold pressing, which is the most important technological component in the production of sheet composite, which is widely studied in the repair and construction works in the interior decoration of residential and industrial premises. The solution to this problem is carried out on the basis of a physical and mathematical model under the assumption that the rheological properties of the deformable medium correspond to the principles of ideal plasticity and a flat deformable state. Within the framework of the problem, in two dimensions of quasistatic compression between absolutely rigid parallel-approaching plates of a thin ideally plastic layer, the stress-strain state of a composite medium is studied. It is believed that in the absence of volumetric loads, the condition of incompressibility of the medium and the associated flow law is fulfilled. Based on the hypothesis of the linear distribution of tangential stresses over the thickness of the deformable layer, analytical expressions for the statistical and kinematic characteristics of the deformation are obtained, and the condition at the edges of the rough plates makes it possible to determine the coefficient of slip thorns, which makes it possible to control the pressing process.Results and conclusions. It was established that the components of the strain rate are directly proportional to the plate approach speed, and the normal stresses acting in the pressing direction are independent of the loading speed, decreasing in magnitude from the center to the periphery.Keywords: yield strength, pressing, plasticity condition, mathematical model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.