Abstractbetween experimental results and charge collection simulation persist. As an example, the measured total charge col-
O S T ILattice defects are introduced into the structure to suppress the motion of magnetic vortices and enhance the critical current density in high temperature superconductors. Point defects are not very effective pinning sites for the cuprate superconductors; however, extended defects, such as linear tracks, have been shown to be strong pinning sites. We study the superconducting cuprate T1-22 12 (the numbers designate TI-Ba-Ca-Cu stoichiometry). Large enhancements of vortex pinning potential were observed in TI-22 12 after high-intermediate energy heavy-ion irradiations where non-continuous extended defects were induced at dE/dx of 9 to 15.2 keV/nm (60 MeV Au, 60 MeV Cu, and 30 MeV Au) and continuous linear defects were induced at 19.5keV/nm (88MeV Au). Our research addresses the question of pinning in highly anisotropic materials like T1-22 12 where the vortices are "pancakes" rather than "rods" and suitable defect structures may be discontinuous extended damage domains. The defect microstructure and the effectiveness of the pinning potential in T1-2212 after irradiation by intermediate energy Au at lower dE1.x of 5-15 keV/nm, where recoils are more significant, is studied using high resolution transmission electron microscopy digital imaging and a SQUID magnetometer. The nature of the ion irradiation damage at these intermediate dE/dx will be correlated to the average vortex pinning potential and the TRIMRC calculations for recoils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.