Single-atom catalysts anchoring offers a desirable pathway for efficiency maximization and cost-saving for photocatalytic hydrogen evolution. However, the single-atoms loading amount is always within 0.5% in most of the reported due to the agglomeration at higher loading concentrations. In this work, the highly dispersed and large loading amount (>1 wt%) of copper single-atoms were achieved on TiO2, exhibiting the H2 evolution rate of 101.7 mmol g−1 h−1 under simulated solar light irradiation, which is higher than other photocatalysts reported, in addition to the excellent stability as proved after storing 380 days. More importantly, it exhibits an apparent quantum efficiency of 56% at 365 nm, a significant breakthrough in this field. The highly dispersed and large amount of Cu single-atoms incorporation on TiO2 enables the efficient electron transfer via Cu2+-Cu+ process. The present approach paves the way to design advanced materials for remarkable photocatalytic activity and durability.
In this paper, a 5,10,15,20-tetrakis(4-(hydroxyl)phenyl) porphyrin (TPPH) noncovalently functionalized reduced graphene oxide (RGO) nanohybrid has been facilely synthesized by immobilizing TPPH on RGO nanosheets. This nanohybrid was characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), and UV-vis spectra, which demonstrated that the TPPH molecule was attached on the surface of the graphene nanosheet. The results of fluorescence quenching and photocurrent enhancement of TPPH-RGO exhibit that the fast electrons transfer from photoexcited TPPH molecules to RGO sheets. Compared with bare TPPH or RGO functional Pt nanoparticles, the TPPH-sensitized RGO loaded with Pt nanoparticles shows remarkable enhanced photocatalytic activity under UV-vis light irradiation. The superior electron-accepting and electron-transporting properties of graphene greatly accelerate the electron transfer from excited TPPH to Pt catalysts, which promote the photocatalytic activity for hydrogen evolution. More importantly, with the assistance of cetyltrimethylammonium bromide (CTAB) surfactant, the catalytic activity and stability is further improved owing to aggregation prevention of TPPH-RGO nanocomposites. Our investigation might not only initiate new opportunities for the development of a facile synthesis yet highly efficient photoinduced hydrogen evolution system (composed of organic dye functionalized graphene) but also pave a new avenue for constructing graphene-based matericals with enhanced catalytic performance and stability under surfactant assistance.
We report a one-pot synthesis of atomically dispersed Ru on ultrathin Pd nanoribbons. By using synchrotron radiation photoemission spectroscopy (SRPES), extended X-ray absorption fine structure (EXAFS) measurements in combination with aberration corrected high-resolution transmission electron microscopy (HRTEM), we show that atomically dispersed Ru with content up to 5.9% was on the surface of the ultrathin nanoribbon. Furthermore, the ultrathin Pd/Ru nanoribbons could remarkably prohibited the hydrogenolysis in chemoselective hydrogenation of C=C bonds, leading to an excellent catalytic selectivity compared with the commercial Pd/C and Ru/C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.