In this paper, we have reported that well-defined graphene oxide (GO) enwrapped Ag/AgX (X = Br, Cl) nanocomposites, which are composed of Ag/AgX nanoparticles and gauze-like GO nanosheets, could be facilely fabricated via a water/oil system. We have shown that thus-synthesized GO-based hybrid nanocomposites could be used as a stable plasmonic photocatalyst for the photodegradation of methyl orange (MO) pollutant under visible-light irradiation. Compared with the corresponding bare Ag/AgX nanospecies, the GO-involved nanocomposites (Ag/AgX/GO) display distinctly enhanced photocatalytic activities. The hybridization of Ag/AgX with GO nanosheets causes the nice adsorptive capacity of Ag/AgX/GO to MO molecules, the smaller size of the Ag/AgX nanoparticles in Ag/AgX/GO, the facilitated charge transfer, and the suppressed recombination of electron-hole pairs in Ag/AgX/GO. It is suggested that these multifactors, resulting from the hybridization of GO, contribute to the enhanced photocatalytic performance observed from Ag/AgX/GO. The investigation likely opens up new possibilities for the development of original yet highly efficient and stable GO-based plasmonic photocatalysts that utilize visible light as an energy source.
In the drive toward green and sustainable chemistry, exploring efficient and stable metal-free photocatalysts with broadband solar absorption from the UV to near-infrared region for the photoreduction of water to H remains a big challenge. To this end, a binary nanohybrid (BP/CN) of two-dimensional (2D) black phosphorus (BP) and graphitic carbon nitride (CN) was designed and used as a metal-free photocatalyst for the first time. During irradiation of BP/CN in water with >420 and >780 nm light, solid H gas was generated, respectively. Owing to the interfacial interaction between BP and CN, efficient charge transfer occurred, thereby enhancing the photocatalytic performance. The efficient charge-trapping and transfer processes were thoroughly investigated with time-resolved diffuse reflectance spectroscopic measurement. The present results show that BP/CN is a metal-free photocatalyst for artificial photosynthesis and renewable energy conversion.
Single-site cocatalysts engineered on supports offer a cost-efficient pathway to utilize precious metals, yet improving the performance further with minimal catalyst loading is still highly desirable. Here we have conducted a photochemical reaction to stabilize ultralow Pt co-catalysts (0.26 wt%) onto the basal plane of hexagonal ZnIn2S4 nanosheets (PtSS-ZIS) to form a Pt-S3 protrusion tetrahedron coordination structure. Compared with the traditional defect-trapped Pt single-site counterparts, the protruding Pt single-sites on h-ZIS photocatalyst enhance the H2 evolution yield rate by a factor of 2.2, which could reach 17.5 mmol g−1 h−1 under visible light irradiation. Importantly, through simple drop-casting, a thin PtSS-ZIS film is prepared, and large amount of observable H2 bubbles are generated, providing great potential for practical solar-light-driven H2 production. The protruding single Pt atoms in PtSS-ZIS could inhibit the recombination of electron-hole pairs and cause a tip effect to optimize the adsorption/desorption behavior of H through effective proton mass transfer, which synergistically promote reaction thermodynamics and kinetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.