Our aim was to examine whether the human glomerulus was a target for C-type natriuretic peptide (CNP) and how A, B and C receptors of natriuretic peptides (ANPR-A, ANPR-B, ANPR-C) were distributed in glomerular mesangial and epithelial cells. CNP stimulated cyclic GMP production in cultured human mesangial and epithelial cells with similar threshold concentrations (1 nM) and maximum effects (basal value x 30 at 1 microM). In contrast, atrial natriuretic peptide (ANP) was only stimulatory in epithelial cells. [125I] CNP bound specifically to mesangial cells with a Kd of 0.47 nM and Bmax of 42 fmol/mg. Equilibrium of binding was obtained after four to five hours at +4 degrees C and nonspecific binding represented 10 to 20% of total binding. HS142-1 (100 micrograms/ml), a specific inhibitor of ANPR-A and ANPR-B, suppressed 90% of CNP-dependent cyclic GMP production whereas it had little effect on [125I]-CNP binding, suggesting that C receptors were largely predominant in mesangial cells. No biological effect of CNP on mesangial cells, including change in basal or angiotensin II-induced contractility and inhibition of basal or serum-dependent proliferation, could be demonstrated. Similar results were obtained with 8-bromo-cyclic GMP and sodium nitroprusside. Intraglomerular localization of ANPR-A, ANPR-B and ANPR-C mRNA was studied using reverse transcriptase-polymerase chain reaction with amplification of their corresponding cDNA by different primers. Amplification products were identified on gel electrophoresis by their predicted sizes and sequencing. ANPR-A, ANPR-B and ANPR-C mRNA were present in epithelial cells whereas only ANPR-B and ANPR-C mRNA were detected in mesangial cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Rat mesangial cells are more sensitive to the cytotoxic effects of CM and hyperosmolar solutions than the less differentiated human fibroblasts. High-osmolar CM are more cytotoxic than ionic and nonionic low-osmolar CM to rat mesangial cells. Ionicity seems to play no deleterious role at similar iodine concentrations because ioxaglate and iopamidol had equivalent cytotoxic effects on mesangial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.