The Commission of the European Communities (CEC) research project "Predictivity and optimisation in medical radiation protection" addressed fundamental operational limitations in existing radiation protection mechanisms. The first part of the project aimed at investigating (1) whether the CEC image quality criteria could be used for optimization of a radiographic process and (2) whether significant differences in image quality based on these criteria could be detected in a controlled project with well known physical and technical parameters. In the present study, chest radiographs on film were produced using healthy volunteers. Four physical/technical parameters were varied in a carefully controlled manner: tube voltage (102 kVp and 141 kVp), nominal speed class (160 and 320), maximum film density (1.3 and 1.8) and method of scatter reduction (grid (R=12) and air gap). The air kerma at the entrance surface was measured for all patients and the risk-related dose H(Golem), based on calculated organ-equivalent dose conversion coefficients and the measured entrance air kerma values, was calculated. Image quality was evaluated by a group of European expert radiologists using a modified version of the CEC quality criteria. For the two density levels, density level 1.8 was significantly better than 1.3 but at the cost of a higher patient radiation exposure. The correlation between the number of fulfilled quality criteria and H(Golem) was generally poor. An air gap technique resulted in lower doses than scatter reduction with a grid but provided comparable image quality. The criteria can be used to highlight optimum radiographic technique in terms of image quality and patient dose, although not unambiguously. A recommendation for good radiographic technique based on a compromise between image quality and risk-related radiation dose to the patient is to use 141 kVp, an air gap, a screen-film system with speed 320 and an optical density of 1.8.
In this study we have investigated the image quality of lumbar spine radiographs taken after recording technical and physical parameters. Two technical parameters were altered, tube voltage (70 kV and 90 kV for the anteroposterior (AP) projection and 77 kV and 95 kV for the lateral projection) and sensitivity of the film-screen system (sensitivity class 400 and 600). In total, 85 images were included in the study. Entrance surface dose (ESD) was measured using thermoluminescent dosemeters. The mean value of ESD for the different technique groups varied between 1.9 mGy (90 kV, sensitivity class 400) and 4.6 mGy (70 kV, sensitivity class 400) for the AP projection, and between 6.4 mGy (95 kV, sensitivity class 600) and 20.4 mGy (70 kV, sensitivity class 400) for the lateral projection. Image criteria given in the "European Guidelines on Quality Criteria for Radiographic Images" were used to assess image quality. Two evaluation methods have been employed. A straightforward scoring of fulfilled image criteria, and visual grading analysis using the structures defined in the image criteria. The latter method provided a sharper distinction between groups of images taken using different radiographic techniques. The average number of fulfilled image criteria for the AP projections varied between 0.74 (90 kV, sensitivity class 400) and 0.87 (70 kV, sensitivity class 400). For the lateral projection this number varied between 0.79 (95 kV, sensitivity class 600) and 0.84 (77 kV, sensitivity class 600). This study shows that image criteria are useful tools in clinical studies of image quality.
The "European Guidelines on Quality Criteria for Diagnostic Radiographic Images" do not address the choice of the film characteristic (H&D) curve, which is an important parameter for the description of a radiographic screen-film system. The image contrast of clinical lumbar spine and chest radiographs was altered by digital image processing techniques, simulating images with different H&D curves, both steeper and flatter than the original. The manipulated images were printed on film for evaluation. Seven experienced radiologists evaluated the clinical image quality by analysing the fulfilment of the European Image Criteria (ICS) and by visual grading analysis (VGA) of in total 224 lumbar spine and 360 chest images. A parallel study of the effect of the H&D curve has also been made using a theoretical model. The contrast (DeltaOD) of relevant anatomical details was calculated, using a Monte Carlo simulation-model of the complete imaging system including a 3D voxel phantom of a patient. Correlations between the calculated contrast and the radiologists' assessment by VGA were sought. The results of the radiologists' assessment show that the quality in selected regions of lumbar spine and chest images can be significantly improved by the use of films with a steeper H&D curve compared with the standard latitude film. Significant (p<0.05) correlations were found between the VGA results and the calculations of the contrast of transverse processes and trabecular details in the lumbar spine vertebrae, and with the contrast of blood vessels in the retrocardiac area of the chest.
The ability to predict clinical image quality from physical measures is useful for optimization in diagnostic radiology. In this work, clinical and physical assessments of image quality are compared and correlations between the two are derived. Clinical assessment has been made by a group of expert radiologists who evaluated fulfillment of the European image criteria for chest and lumbar spine radiography using two scoring methods: image criteria score (ICS) and visual grading analysis score (VGAS). Physical image quality measures were calculated using a Monte Carlo simulation model of the complete imaging system. This model includes a voxelized male anatomy and was used to calculate contrast and signal-to-noise ratio of various important anatomical details and measures of dynamic range. Correlations between the physical image quality measures on the one hand and the ICS and VGAS on the other were sought. 16 chest and 4 lumbar spine imaging system configurations were compared in frontal projection. A statistically significant correlation with clinical image quality was found in chest posteroanterior radiography for the contrast of blood vessels in the retrocardiac area and a measure of useful dynamic range. In lumbar spine anteroposterior radiography, a similar significant correlation with clinical image quality was found between the contrast and signal-to-noise ratio of the trabecular structures in the L1-L5 vertebrae. The significant correlation shows that clinical image quality can, at least in some cases, be predicted from appropriate measures of physical image quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.