We analyse the properties of substructures within dark matter haloes (subhaloes) using a set of high-resolution numerical simulations of the formation of structure in a ΛCDM universe. Our simulation set includes 11 high-resolution simulations of massive clusters as well as a region of mean density, allowing us to study the spatial and mass distribution of substructures down to a mass resolution limit of 109h-1 Msolar. We also investigate how the properties of substructures vary as a function of the mass of the `parent' halo in which they are located. We find that the substructure mass function depends at most weakly on the mass of the parent halo and is well described by a power law. The radial number density profiles of substructures are steeper in low mass haloes than in high-mass haloes. More massive substructures tend to avoid the centres of haloes and are preferentially located in the external regions of their parent haloes. We also study the mass accretion and merging histories of substructures, which we find to be largely independent of environment. We find that a significant fraction of the substructures residing in clusters at the present day were accreted at redshifts z < 1. This implies that a significant fraction of present-day `passive' cluster galaxies were still outside the cluster progenitor and were more active at z~ 1
We have recently obtained a set of high-resolution images of Terzan 5 in the K and J bands by using MAD 6 , a Multi-Conjugate Adaptive Optics demonstrator instrument installed at the Very Large Telescope (VLT) of the European Southern Observatory (ESO). MAD operates at near-infrared wavelengths, thus revealing the only component of stellar radiation that can efficiently cross the thick clouds of dust obscuring the Galactic bulge. It is able to perform exceptionally good and uniform adaptive optics correction over its entire field of view (1'x1'), thus compensating for the degradation effects to the astronomical images induced by the Earth's atmosphere. In particular, we have obtained a set of K-band (2.2m) images of Terzan 5 close to the diffraction limit (Fig. 1). The sharpness and uniformity of the images yields very high quality photometry, resulting in accurate (K, JK) colour-magnitude diagram (CMD) even for the very central region of the cluster, and leading to a surprising discovery. We have detected two well-defined red horizontal branch clumps, separated in luminosity: a bright horizontal branch (BHB) at K = 12.85 and a faint horizontal branch (FHB) at K = 13.15, the latter having a bluer (JK) colour (Fig. 2).We have carefully considered whether the double horizontal branch could be spurious. It is neither due to instrumental effects ( Fig. 2), nor to differential reddening 7,8 3 (as the two horizontal branch clumps in the CMD are separated in a direction which is essentially orthogonal to the reddening vector), nor to field contamination (while field stars are expected to be almost uniformly distributed over the MAD field of view, the radial distributions of the stars belonging to the two horizontal branch clumps are significantly concentrated toward the cluster centre and are inconsistent with a uniform distribution at more than 5 level; see Fig. 3a and Supplementary Information). We have also found that the radial distributions of the two horizontal branch populations are different ( Fig. 3a): according to a Kolmogorov-Smirnov test, the BHB population is significantly (at > 3.5level) more centrally concentrated than that of the FHB. The stars belonging to the BHB are also substantially more numerous than those of the FHB near the cluster centre (that is, at distances r < 20''), becoming progressively more rare at larger radii (Fig. 3b).Once alerted to the existence of the double horizontal branch, we have also (Fig. 4a).To date, apart from a significant spread in the abundance patterns of a few light elements (such as Na and O) 1 , the chemical composition of all globular clusters in the Galaxy is known to be extremely uniform in terms of iron content, with the only exception being Centauri 4,5 in the Galactic halo. Hence, Terzan 5 is the first stellar aggregate discovered in the Galactic bulge that has globular-cluster-like properties but also with the signatures of a much more complex star formation history.To further investigate this issue, we have performed a differential reddening correc...
Globular star clusters that formed at the same cosmic time may have evolved rather differently from the dynamical point of view (because that evolution depends on the internal environment) through a variety of processes that tend progressively to segregate stars more massive than the average towards the cluster centre. Therefore clusters with the same chronological age may have reached quite different stages of their dynamical history (that is, they may have different 'dynamical ages'). Blue straggler stars have masses greater than those at the turn-off point on the main sequence and therefore must be the result of either a collision or a mass-transfer event. Because they are among the most massive and luminous objects in old clusters, they can be used as test particles with which to probe dynamical evolution. Here we report that globular clusters can be grouped into a few distinct families on the basis of the radial distribution of blue stragglers. This grouping corresponds well to an effective ranking of the dynamical stage reached by stellar systems, thereby permitting a direct measure of the cluster dynamical age purely from observed properties.
Stars in globular clusters are generally believed to have all formed at the same time, early in the Galaxy's history. 'Blue stragglers' are stars massive enough that they should have evolved into white dwarfs long ago. Two possible mechanisms have been proposed for their formation: mass transfer between binary companions and stellar mergers resulting from direct collisions between two stars. Recently the binary explanation was claimed to be dominant. Here we report that there are two distinct parallel sequences of blue stragglers in M 30. This globular cluster is thought to have undergone 'core collapse', during which both the collision rate and the mass transfer activity in binary systems would have been enhanced. We suggest that the two observed sequences are a consequence of cluster core collapse, with the bluer population arising from direct stellar collisions and the redder one arising from the evolution of close binaries that are probably still experiencing an active phase of mass transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.