Complementary experimental and theoretical studies presented in this work examine the structure, organization, and solvating properties of methanol at a silica/methanol, solid/liquid interface. Findings from these experiments illustrate how strong association between a silica substrate and methanol solvent creates a distinctly nonpolar solvation environment for adsorbed solutes. Resonance-enhanced second-harmonic spectra and time-resolved fluorescence emission in a total internal reflection geometry both show that adsorbed solutes sample an interfacial environment having properties resembling those of a nonpolar solvent. Molecular dynamics simulations identify the origin of this effect. Strong hydrogen bonding between the first layer of methanol and silica’s silanol groups creates what is effectively a methyl-terminated surface that leads to a second layer having significantly reduced density and hydrogen bonding compared to bulk solution. The calculated solvent reorientation times in these first two layers is significantly slower than in bulk, implying slow dielectric relaxation and supporting both second-harmonic and time-resolved fluorescence results. Collectively, these studies illustrate how surface-induced changes in solvent structure change the chemistry at strongly associating solid/liquid interfaces as compared to bulk solution limits.
Resonance-enhanced second-harmonic generation (SHG) was used to examine the effects of solution pH and surface charge on para-nitrophenol (pNP) adsorption to silica/aqueous interfaces. During the early stages of monolayer formation, SHG spectra of interfacial pNP showed a single resonant excitation wavelength at approximately 313 nm regardless of solution pH. This resonance wavelength of adsorbed species is lower than the 318 nm excitation maximum of pNP in bulk aqueous solution. Experiments were performed at pHs of 1.0, 5.0, 7.0, and 10.5. Under these conditions, the silica surface carried a surface charge that ranged from slightly positive (pH = 1) to strongly negative (pH = 10.5) due to protonation/deprotonation of surface silanol groups. Over the course of 1-3 h, SHG spectra of pNP evolved so that spectra from interfaces fully equilibrated with solution pH showed two clear resonance features with wavelengths of approximately 310 and 330 nm. These wavelengths imply that adsorbed pNP samples two discrete local solvation environments at the silica/aqueous interface. On the basis of the solvatochromic behavior of pNP in different bulk solvents, the shorter-wavelength feature corresponds to a local environment having an effective dielectric constant of 9.5 (similar to that of dichloromethane), while the longer-wavelength feature lies outside of pNP's standard solvatochromic window. This longer-wavelength result implies an effective dielectric constant greater than that of bulk water or an adsorption mechanism that has pNP adsorbates sharing a proton with surface silanol groups (and adopting an electronic structure that begins to resemble that of its deprotonated form, p-nitrophenoxide). The longer-wavelength feature is weakest in the low-pH systems when the surface is either neutral or slightly positively charged and most prominent at the negatively charged silica/aqueous (pH = 10.5) interface. pNP adsorption isotherms for all systems showed approximate Langmuir behavior. Using concentration-dependent data from both low and intermediate pH led to calculated adsorption energies of -19 ± 2 kJ/mol for all pH values except pH 10.5 where ΔG(ads) was -6 ± 2 kJ/mol. Taken together, these spectroscopic and adsorption studies of pNP adsorption to silica/aqueous interfaces as a function of aqueous pH show that interfacial acid/base chemistry can require hours to reach equilibrium and that the silica surface presents hydrogen-bonding solutes such as pNP with two distinct adsorption sites. The invariance of pNP's SHG spectra to bulk solution pH suggests that pNP solvation is dominated by substrate-solute interactions, with the adjacent solvent having very little influence on adsorbed solute properties.
Second order nonlinear optical spectroscopy has been employed to examine the organization of four different liquids at the hydrophilic silica/liquid interface. The liquids - cyclohexane, methylcyclohexane, 1-propanol, and 2-propanol - were chosen to isolate how intermolecular forces between the liquid and the substrate competed with steric effects to control liquid structure and solvating properties across the interfacial region. Vibrational sum frequency generation (VSFG) data showed that cyclohexane structure at the silica/liquid cyclohexane interface closely resembled the structure of a cyclohexane monolayer adsorbed to the silica/vapor interface. Methylcyclohexane, however, showed evidence of large structural reorganization between the silica/liquid and silica/monolayer/vapor interfaces. 1-Propanol at a silica/vapor interface formed a well-ordered, Langmuir-like monolayer due to strong hydrogen bonding with the surface silanols and cohesive van der Waals interactions between carbon chains. 1-Propanol at the silica/liquid interface retained the same ordered structure. In contrast, 2-propanol adopted different structures adsorbed to the solid/vapor and at the solid/ liquid interfaces. Specifically, the plane defined by 2-propanol's three carbon atoms changed orientation from being perpendicular to the surface (silica/vapor) to parallel to the surface (silica/liquid). Surface mediated liquid structure affected the solvation of adsorbed solutes. Resonance enhanced second harmonic generation (SHG) data showed that silica/alkane interfaces were significantly more polar than would be expected based on a solute's bulk solution solvatochromic behavior. Both silica/alcohol interfaces exhibited alkane-like polarity, a result that was interpreted in terms of a reduction in hydrogen bonding opportunities for adsorbed solutes.
Second harmonic generation (SHG) and time-resolved, total internal reflection fluorescence (TR-TIRF) spectroscopy were used to examine the adsorption, solvation, and aggregation of a coumarin solute, Coumarin 152 (C152), at the silica/methanol interface. Experiments were performed as a function of bulk C152 concentration with SHG data providing information about relative surface coverage and ground state solvation environment. TR-TIRF data measured emission lifetimes of C152 adsorbed to the silica/methanol interface. SHG spectra show strong resonance enhancement at 365 nm, a result that is blue-shifted considerably from C152's electronic excitation of ∼400 nm in bulk methanol. Given C152's solvatochromic behavior, this observation implies that C152 adsorbed to the silica/methanol interface experiences a local dielectric environment that is significantly less polar than in bulk methanol. TR-TIRF decays at sub-micromolar bulk concentrations were fit to two lifetimes: one assigned to C152 emission in bulk methanol (0.9 ns) and a longer lifetime assigned to contributions from adsorbed C152 (∼4 ns). The longer lifetime is similar to C152 in alkanes, a result that is consistent with SHG data. Isothermal data from SHG experiments show unusual behavior as bulk C152 concentration increases. Instead of approaching an asymptotic limit signifying monolayer coverage, the SHG response rises at the lowest C152 concentrations and then decreases dramatically, suggesting the onset of aggregate formation. Changes in the TR-TIRF emission behavior of C152 at higher C152 bulk concentrations support this hypothesis. These findings are interpreted in terms of C152's ability to self-associate, and the energetics of dimer formation are explored using ab initio calculations and polarizable continuum models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.