The operation of InP-based single photon avalanche diodes (SPADs) in Geiger mode provides great utility for the detection of single photons at near-infrared wavelengths between 1.0 and 1.6 um. However, SPADs have performance limitations with respect to photon counting rate and the absence of photon number resolution that, at the most fundamental level, can be traced back to the positive feedback inherent in the impact ionization-driven avalanche process. In this paper, we describe the inclusion of negative feedback with best-in-class InP-based single photon avalanche diode (SPAD) structures to form negative feedback avalanche diodes (NFADs) in which many of the present limitations of SPAD operation can be overcome. The use of thin film resistors as monolithic passive negative feedback elements ensures rapid self-quenching with very low parasitic effects and wafer-level integration for creating multi-element NFAD arrays. To our knowledge, this is the first demonstration of this approach with InP-based avalanche diode structures. We present NFAD device properties, including pulse response, quenching dynamics, and photon counting performance parameters such as photon detection efficiency.
Raman amplification is investigated both experimentally and numerically. It is demonstrated that, depending on the different pump wavelength combinations, the shape as well as the amount of the fiber gain can be altered accordingly. A numerical model is presented that includes the relevant physical effects to describe properly the different pump and signal interactions. Results of several pump combinations are compared to experimental data and used to derive numerical values for the local fiber gain.
In recent years significant progress has been made in near-infrared single photon detection using Geiger-mode InPbased single photon avalanche diodes (SPADs). A more detailed understanding of these detectors with regard to device design, material growth and device fabrication has led to continual performance improvements. A variety of circuits for enabling SPAD Geiger-mode operation have been proposed and demonstrated as well. However, due to the inherent positive feedback nature of the avalanche process, Geiger-mode SPADs are constrained by certain performance limitations, particularly with regard to counting rate and the absence of photon number resolution. These limitations hinder the use of SPADs in certain applications. By incorporating a negative feedback mechanism into InP-based SPADs, these SPAD performance limitations can be overcome. In this paper, we present a negative feedback avalanche diode (NFAD), which is formed by monolithically integrating a passive negative feedback element with a highperformance InP-based SPAD. We describe the design and operation of the NFAD device, along with basic characteristics such as pulse response and quenching dynamics, as well as the dependence of these characteristics on excess bias voltage and input photon number. We will also review the results of near-infrared single photon counting performance for fundamental performance parameters such as photon detection efficiency, dark count rate, and afterpulsing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.