Sclerotinia sclerotiorum is a fungal plant pathogen and the causal agent of lettuce drop, an economically important disease of California lettuce. The structure of the S. sclerotiorum mating type locus MAT has previously been reported and consists of two idiomorphs that are fused end-to-end as in other homothallics. We investigated the diversity of S. sclerotiorum MAT using a total of 283 isolates from multiple hosts and locations, and identified a novel MAT allele that differed by a 3.6-kb inversion and was designated Inv+, as opposed to the previously known S. sclerotiorum MAT that lacked the inversion and was Inv-. The inversion affected three of the four MAT genes: MAT1-2-1 and MAT1-2-4 were inverted and MAT1-1-1 was truncated at the 3’-end. Expression of MAT genes differed between Inv+ and Inv- isolates. In Inv+ isolates, only one of the three MAT1-2-1 transcript variants of Inv- isolates was detected, and the alpha1 domain of Inv+ MAT1-1-1 transcripts was truncated. Both Inv- and Inv+ isolates were self-fertile, and the inversion segregated in a 1∶1 ratio regardless of whether the parent was Inv- or Inv+. This suggested the involvement of a highly regulated process in maintaining equal proportions of Inv- and Inv+, likely associated with the sexual state. The MAT inversion region, defined as the 3.6-kb MAT inversion in Inv+ isolates and the homologous region of Inv- isolates, was flanked by a 250-bp inverted repeat on either side. The 250-bp inverted repeat was a partial MAT1-1-1 that through mediation of loop formation and crossing over, may be involved in the inversion process. Inv+ isolates were widespread, and in California and Nebraska constituted half of the isolates examined. We speculate that a similar inversion region may be involved in mating type switching in the filamentous ascomycetes Chromocrea spinulosa, Sclerotinia trifoliorum and in certain Ceratocystis species.
Summary Sugarcane mosaic virus (SCMV) is a pathogen of worldwide importance that causes dwarf mosaic disease on maize (Zea mays). Until now, few maize genes/proteins have been shown to be involved in resistance to SCMV. In this study, we characterized the role of maize phenylalanine ammonia‐lyases (ZmPALs) in accumulation of the defence signal salicylic acid (SA) and in resistance to virus infection. SCMV infection significantly increased SA accumulation and expression of SA‐responsive pathogenesis‐related protein genes (PRs). Interestingly, exogenous SA treatment decreased SCMV accumulation and enhanced resistance. Both reverse transcription‐coupled quantitative PCR and RNA‐Seq data confirmed that expression levels of at least four ZmPAL genes were significantly up‐regulated upon SCMV infection. Knockdown of ZmPAL expression led to enhanced SCMV infection symptom severity and virus multiplication, and simultaneously resulted in decreased SA accumulation and PR gene expression. Intriguingly, application of exogenous SA to SCMV‐infected ZmPAL‐silenced maize plants decreased SCMV accumulation, showing that ZmPALs are required for SA‐mediated resistance to SCMV infection. In addition, lignin measurements and metabolomic analysis showed that ZmPALs are also involved in SCMV‐induced lignin accumulation and synthesis of other secondary metabolites via the phenylpropanoid pathway. In summary, our results indicate that ZmPALs are required for SA accumulation in maize and are involved in resistance to virus infection by limiting virus accumulation and moderating symptom severity.
Sugarcane mosaic virus (SCMV) is the most important cause of maize dwarf mosaic disease. To identify maize genes responsive to SCMV infection and that may be involved in pathogenesis, a comparative proteomic analysis was performed using the first and second systemically infected leaves (termed 1 SL and 2 SL, respectively). Seventy-one differentially expressed proteins were identified in 1 SL and 2 SL upon SCMV infection. Among them, eight proteins showed the same changing patterns in both 1 SL and 2 SL. Functional annotations of regulated proteins and measurement of photosynthetic activity revealed that photosynthesis was more inhibited and defensive gene expression more pronounced in 1 SL than in 2 SL. Knockdown of regulated proteins in both 1 SL and 2 SL by a brome mosaic virus-based gene silencing vector in maize indicated that protein disulfide isomerase-like and phosphoglycerate kinase were required for optimal SCMV replication. By contrast, knockdown of polyamine oxidase (ZmPAO) significantly increased SCMV accumulation, implying that ZmPAO activity might contribute to resistance or tolerance. The results suggest that combining comparative proteomic analyses of different tissues and virus-induced gene silencing is an efficient way to identify host proteins supporting virus replication or enhancing resistance to virus infection.
The epidemiology of lettuce downy mildew has been investigated extensively in coastal California. However, the spatial patterns of the disease and the distance that Bremia lactucae spores can be transported have not been determined. During 1995 to 1998, we conducted several field- and valley-scale surveys to determine spatial patterns of this disease in the Salinas valley. Geostatistical analyses of the survey data at both scales showed that the influence range of downy mildew incidence at one location on incidence at other locations was between 80 and 3,000 m. A linear relationship was detected between semivariance and lag distance at the field scale, although no single statistical model could fit the semi-variograms at the valley scale. Spatial interpolation by the inverse distance weighting method with a power of 2 resulted in plausible estimates of incidence throughout the valley. Cluster analysis in geographic information systems on the interpolated disease incidence from different dates demonstrated that the Salinas valley could be divided into two areas, north and south of Salinas City, with high and low disease pressure, respectively. Seasonal and spatial trends along the valley suggested that the distinction between the downy mildew conducive and nonconducive areas might be determined by environmental factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.