Architectural changes are happening in the modern industries due to the adaption and the deployment of ‘Internet of Things (IoT)’ for monitoring and controlling various devices remotely from the external world. The most predominant place where the IoT technology makes the most sense is the industrial automation processes in smart industries (Industry 4.0). In this paper, a reliable ‘Next Generation Cyber Security Architecture (NCSA)’ is presented for Industrial IoT (IIoT) environment that detects and thwarts cybersecurity threats and vulnerabilities. It helps to automate the processes of exchanging real-time critical information between devices without any human intervention. It proposes an analytical framework that can be used to protect entities and network traffics involved in the IIoT wireless communication. It incorporates an automated cyber-defense authentication mechanism that detects and prevents security attacks when a network session has been established. The defense mechanism accomplishes the required level of security protection in the network by generating an identity token which is cryptographically encrypted and verified by a virtual gateway system. The proposed NCSA improves security in the IIoT environment and reduces operational management cost.
<span lang="EN-US">The packet forwarding node selection is one of the main constraints in the Software Defined Network (SDN). To improve the network performance, the SDN controller has to choose the shortest and optimised path between source and destination in routine and emergency packet transmission. In e-health service, information of the emergency patient has to be transferred immediately to remote hospitals or doctors by using efficient packet routing approach in Wireless Body Area Network (WBAN). In WBAN, to improve the packet transmission, the optimal packet routing policy developed based on packets priority with the support of a greedy algorithm for SDN. The SDN Controller selects the forwarding node based on node propagation delay and available bandwidth between two forwarding nodes. The mesh network topology network created for implementation, implementation results are compared with existing research works. Finally, this algorithm implemented in our institution, Software defined communication testbed laboratory (SDCTestbed Lab) with the support of 13 Zodiac-Fx (Forwarding device), 2 Raspberry-Pi3 B+ Model (host) and Arduino kit (sensor node).</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.