The science and management of infectious disease are entering a new stage. Increasingly public policy to manage epidemics focuses on motivating people, through social distancing policies, to alter their behavior to reduce contacts and reduce public disease risk. Person-to-person contacts drive human disease dynamics. People value such contacts and are willing to accept some disease risk to gain contact-related benefits. The cost-benefit trade-offs that shape contact behavior, and hence the course of epidemics, are often only implicitly incorporated in epidemiological models. This approach creates difficulty in parsing out the effects of adaptive behavior. We use an epidemiological-economic model of disease dynamics to explicitly model the trade-offs that drive person-toperson contact decisions. Results indicate that including adaptive human behavior significantly changes the predicted course of epidemics and that this inclusion has implications for parameter estimation and interpretation and for the development of social distancing policies. Acknowledging adaptive behavior requires a shift in thinking about epidemiological processes and parameters.susceptible-infected-recovered model | R 0 | reproductive number | bioeconomics T he science and management of infectious disease is entering a new stage. The increasing focus on incentive structures to motivate people to engage in social distancing-reducing interpersonal contacts and hence public disease risk (1)-changes what health authorities need from epidemiological models. Social distancing is not new-for centuries humans quarantined infected individuals and shunned the obviously ill, but new approaches are being used to deal with modern social interactions. Scientific development of social distancing public policies requires that epidemiological models explicitly address behavioral responses to disease risk and other incentives affecting contact behavior. This paper models the role of adaptive behavior in an epidemiological system. Recognizing adaptive behavior means explicitly incorporating behavioral responses to disease risk and other incentives into epidemiological models (2, 3). The workhorse of modern epidemiology, the compartmental epidemiological model (4, 5), does not explicitly include behavioral responses to disease risk. The transmission factors in these models combine and confound human behavior and biological processes. We develop a simple compartmental model that explicitly incorporates adaptive behavior and show that this modification alters understanding of standard epidemiological metrics. For example, the basic reproductive number, R 0 , is a function of biological processes and human behavior, but R 0 lacks a behavioral interpretation in the existing literature. Biological and behavioral feedbacks muddle R 0 's biological interpretation and confound its estimation.Prior approaches that incorporate behavior into epidemiological models generally fall into three categories: specification of nonlinear contact rate functions, expanded epidemiologi...
Mathematical epidemiology, one of the oldest and richest areas in mathematical biology, has significantly enhanced our understanding of how pathogens emerge, evolve, and spread. Classical epidemiological models, the standard for predicting and managing the spread of infectious disease, assume that contacts between susceptible and infectious individuals depend on their relative frequency in the population. The behavioral factors that underpin contact rates are not generally addressed. There is, however, an emerging a class of models that addresses the feedbacks between infectious disease dynamics and the behavioral decisions driving host contact. Referred to as ''economic epidemiology'' or ''epidemiological economics,'' the approach explores the determinants of decisions about the number and type of contacts made by individuals, using insights and methods from economics. We show how the approach has the potential both to improve predictions of the course of infectious disease, and to support development of novel approaches to infectious disease management.
The dynamics, control, and evolution of communicable and vectorborne diseases are intimately connected to the joint dynamics of epidemiological, behavioral, and mobility processes that operate across multiple spatial, temporal, and organizational scales. The identification of a theoretical explanatory framework that accounts for the pattern regularity exhibited by a large number of host-parasite systems, including those sustained by host-vector epidemiological dynamics, is but one of the challenges facing the coevolving fields of computational, evolutionary, and theoretical epidemiology. Host-parasite epidemiological patterns, including epidemic outbreaks and endemic recurrent dynamics, are characteristic to well-identified regions of the world; the result of processes and constraints such as strain competition, host and vector mobility, and population structure operating over multiple scales in response to recurrent disturbances (like El Niño) and climatological and environmental perturbations over thousands of years. It is therefore important to identify and quantify the processes responsible for observed epidemiological macroscopic patterns: the result of individual interactions in changing social and ecological landscapes. In this perspective, we touch on some of the issues calling for the identification of an encompassing theoretical explanatory framework by identifying some of the limitations of existing theory, in the context of particular epidemiological systems. Fostering the reenergizing of research that aims at disentangling the role of epidemiological and socioeconomic forces on disease dynamics, better understood as complex adaptive systems, is a key aim of this perspective.infectious disease | risk | complex adaptive systems | mobility | behavior
If shared social norms play only a minor role in the social contagion of obesity, interventions targeted at changing ideas about appropriate BMIs or body sizes may be less useful than those working more directly with behaviors, for example, by changing eating habits or transforming opportunities for and constraints on dietary intake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.