This paper presents the evaluation of a Schottky contact technology based on electrochemical metal deposition. The results of a long-term systematic investigation and optimization of the anode formation process to improve the yield and performance of Schottky-based GaAs mixer diodes are detailed. Surface preparation prior to the Schottky-metal deposition and anode metallization as previously optimized for whisker-contacted diodes are successfully transferred to the fabrication of planar structures. This uses an auxiliary honeycomb array of anode-like structures called 'dummy anodes', which are processed simultaneously with the real anodes and then removed in the later technological processes. Consequently, the scattering of planar diodes electrical parameters is significantly reduced and the yield of the fabrication process increases from about 5% up to about 50%. Very good dc characteristics such as series resistance (R s ) below 8 , ideality factor (η) below 1.2 and saturation current (I sat ) of the order of 10 −17 A are achieved for the anode diameter as small as 1 µm. An excellent IF-noise figure of 250 K at 4.8 GHz up to 280 K at 2.1 GHz with current bias up to 3 mA is obtained for non-cooled THz mixer planar diodes. The use of this technological approach has enabled the extraction of statistically significant data which have been used to characterize the criticality of each step of the fabrication process on the device performance.
This paper presents results which originated from a long-term systematic optimization of surface processing prior to anode formation of THz Schottky-based components. Particularly, four most promising surface-processing approaches are carefully investigated separately and in combination in order to understand the chemical and physical processes occurring on a GaAs surface. A reliable technological approach for anode formation is identified, which exhibits optimal diode characteristics and production repeatability. A model is proposed for the influence of each process on the subsequent one in the fabrication process sequence. DC-and IF-noise measurements are performed using an automated measurement system providing statistically significant data. Very good dc-parameters such as a series resistance of R s = 15 , an ideality factor N = 1.168, a reverse current I s = 0.024 fA and an IF-noise temperature of 257 K at 1 mA current bias with a good uniformity are achieved for non-cooled Schottky diodes with an anode diameter of 1 µm. The best noise figure is measured to be as low as 220 K at 3.8 GHz and 1 mA current bias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.