The fake news on social media and various other media is wide spreading and is a matter of serious concern due to its ability to cause a lot of social and national damage with destructive impacts. A lot of research is already focused on detecting it. This paper makes an analysis of the research related to fake news detection and explores the traditional machine learning models to choose the best, in order to create a model of a product with supervised machine learning algorithm, that can classify fake news as true or false, by using tools like python scikit-learn, NLP for textual analysis. This process will result in feature extraction and vectorization; we propose using Python scikit-learn library to perform tokenization and feature extraction of text data, because this library contains useful tools like Count Vectorizer and Tiff Vectorizer. Then, we will perform feature selection methods, to experiment and choose the best fit features to obtain the highest precision, according to confusion matrix results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.