The fake news on social media and various other media is wide spreading and is a matter of serious concern due to its ability to cause a lot of social and national damage with destructive impacts. A lot of research is already focused on detecting it. This paper makes an analysis of the research related to fake news detection and explores the traditional machine learning models to choose the best, in order to create a model of a product with supervised machine learning algorithm, that can classify fake news as true or false, by using tools like python scikit-learn, NLP for textual analysis. This process will result in feature extraction and vectorization; we propose using Python scikit-learn library to perform tokenization and feature extraction of text data, because this library contains useful tools like Count Vectorizer and Tiff Vectorizer. Then, we will perform feature selection methods, to experiment and choose the best fit features to obtain the highest precision, according to confusion matrix results.
Weather conditions often disrupt the proper functioning of transportation systems. Present systems either deploy an array of sensors or use an in-vehicle camera to predict weather conditions. These solutions have resulted in incremental cost and limited scope. To ensure smooth operation of all transportation services in all-weather conditions, a reliable detection system is necessary to classify weather in wild. The challenges involved in solving this problem is that weather conditions are diverse in nature and there is an absence of discriminate features among various weather conditions. The existing works to solve this problem have been scene specific and have targeted classification of two categories of weather. In this paper, we have created a new open source dataset consisting of images depicting three classes of weather i.e rain, snow and fog called RFS Dataset. A novel algorithm has also been proposed which has used super pixel delimiting masks as a form of data augmentation, leading to reasonable results with respect to ten Convolutional Neural Network architectures.
Map Reduce has gained remarkable significance as a prominent parallel data processing tool in the research community, academia and industry with the spurt in volume of data that is to be analyzed. Map Reduce is used in different applications such as data mining, data analytics where massive data analysis is required, but still it is constantly being explored on different parameters such as performance and efficiency. This survey intends to explore large scale data processing using MapReduce and its various implementations to facilitate the database, researchers and other communities in developing the technical understanding of the MapReduce framework. In this survey, different MapReduce implementations are explored and their inherent features are compared on different parameters. It also addresses the open issues and challenges raised on fully functional DBMS/Data Warehouse on MapReduce. The comparison of various Map Reduce implementations is done with the most popular implementation Hadoop and other similar implementations using other platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.