In this article, a three-dimensional inversion recovery sequence was optimized with the aim of generating in vivo volume T(1) maps of the heart using a 1.5-T MR system. Acquisitions were performed before and after gadolinium diethylenetriamine penta-acetic acid (Gd-DTPA) administration in one patient with hypertrophic cardiomyopathy and in two healthy volunteers. Data were acquired with a multishot fast field echo readout using both ECG and respiratory triggers. A dedicated phantom, composed of four solutions with different T(1) values, was positioned on the subjects' thoracic region to perform patient-specific calibration. Pixel based T(1) maps were calculated with a custom Matlab(®) code. Phantom measurements showed a good accuracy of the technique and in vivo T(1) estimation of liver, skeletal muscle, myocardium, and blood resulted in good agreement with values reported in the literature. Multiple three-dimensional inversion recovery technique is a feasible and accurate method to perform T(1) volume mapping.
Purpose
Our purpose was to assess the clinical outcomes and target positioning accuracy of frameless linear accelerator single-isocenter multiple-target (SIMT) dynamic conformal arc (DCA) stereotactic radiosurgery (SRS) for multiple brain metastases (BM).
Methods and Materials
Between October 2016 and September 2018, 31 consecutive patients ≥18 years old with 204 BM <3 cm in maximum size receiving SIMT DCA SRS were retrospectively evaluated. All plans were created using a dedicated automated treatment planning software (Brainlab, Munich, Germany), and treatments were performed with a Truebeam STx or a Novalis Tx (Brainlab and Varian Medical Systems, CA). The accuracy of setup and interfraction patient repositioning was assessed by Brainlab ExacTrac radiograph 6-dimensional image system and the risk of compromised target dose coverage evaluated. Brain control and overall survival were estimated by Kaplan-Meier method calculated from the time of SRS.
Results
Fourteen patients were treated for 4 to 6 and 17 patients for 7 to 10 BM. The mean gross tumor volume (GTV) was 0.65 cm
3
and the mean planning target volume (PTV) was 0.89 cm
3
. Mean V95 (the volume of the PTV covered by 95% of the prescription dose) and D95 (the prescription dose covering 95% of the PTV) were 99.5% and 21.1 Gy, respectively. With a median clinical follow-up of 11 months (range, 4-26 months), the 1-year survival was 68% and local control was 89%. As a consequence of plan isocenter residual errors, a loss of target coverage, defined as V95 < 95%, occurred in 28 PTVs (10 patients); using a 1 mm GTV-to-PTV margin, adequate dose coverage was maintained for all lesions.
Conclusions
SIMT DCA SRS represents a fast and effective approach for patients with up to 10 BM. The dosimetric effects of residual set-up and intrafraction positioning errors are modest, although a GTV-to-PTV margin of 1 mm is recommended.
PurposeRetrospective analysis of 3D clinical treatment plans to investigate qualitative, possible, clinical consequences of the use of PBC versus AAA.MethodsThe 3D dose distributions of 80 treatment plans at four different tumour sites, produced using PBC algorithm, were recalculated using AAA and the same number of monitor units provided by PBC and clinically delivered to each patient; the consequences of the difference on the dose-effect relations for normal tissue injury were studied by comparing different NTCP model/parameters extracted from a review of published studies. In this study the AAA dose calculation is considered as benchmark data. The paired Student t-test was used for statistical comparison of all results obtained from the use of the two algorithms.ResultsIn the prostate plans, the AAA predicted lower NTCP value (NTCPAAA) for the risk of late rectal bleeding for each of the seven combinations of NTCP parameters, the maximum mean decrease was 2.2%. In the head-and-neck treatments, each combination of parameters used for the risk of xerostemia from irradiation of the parotid glands involved lower NTCPAAA, that varied from 12.8% (sd=3.0%) to 57.5% (sd=4.0%), while when the PBC algorithm was used the NTCPPBC’s ranging was from 15.2% (sd=2.7%) to 63.8% (sd=3.8%), according the combination of parameters used; the differences were statistically significant. Also NTCPAAA regarding the risk of radiation pneumonitis in the lung treatments was found to be lower than NTCPPBC for each of the eight sets of NTCP parameters; the maximum mean decrease was 4.5%. A mean increase of 4.3% was found when the NTCPAAA was calculated by the parameters evaluated from dose distribution calculated by a convolution-superposition (CS) algorithm. A markedly different pattern was observed for the risk relating to the development of pneumonitis following breast treatments: the AAA predicted higher NTCP value. The mean NTCPAAA varied from 0.2% (sd = 0.1%) to 2.1% (sd = 0.3%), while the mean NTCPPBC varied from 0.1% (sd = 0.0%) to 1.8% (sd = 0.2%) depending on the chosen parameters set.ConclusionsWhen the original PBC treatment plans were recalculated using AAA with the same number of monitor units provided by PBC, the NTCPAAA was lower than the NTCPPBC, except for the breast treatments. The NTCP is strongly affected by the wide-ranging values of radiobiological parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.