The seismic surface wave method (SWM) is a powerful means of characterizing near-surface structures. Although the SWM consists of only three steps (data acquisition, determination of dispersion curves, and inversion), it is important to take considerable care with the second step, determination of the dispersion curves. This step is usually completed by spectral analysis of surface waves (SASW) or multichannel analysis of surface waves (MASW). However, neither method is ideal, as each has its advantages and disadvantages. SASW provides higher horizontal resolution, but it is very sensitive to coherent noise and individual geophone coupling. MASW is a robust method able to separate different wave types, but its horizontal resolution is lower. Stacking of surface waves (SSW) is a good compromise between SASW and MASW. Using a reduced number of traces increases the horizontal resolution of MASW, and utilizing other shot records with the same receivers compensates for the decreased signal-to-noise ratio. The stacking is realized by summing the [Formula: see text] amplitude spectra of windowed shot records, where windowing produces higher horizontal resolution and stacking produces improved data quality. Mixing is applied between the stacks derived with different parameters, as different frequency ranges require different windowing. SSW was tested and corroborated on a deep seismic data set. Horizontal resolution is validated by [Formula: see text] plots at different frequencies, and [Formula: see text] plots present data quality.
In the near surface with unconsolidated soils, shear-wave properties can often be characterised better and with a higher resolution than compressional-wave properties. To enable imaging ahead of a tunnel-boring machine, we developed a seismic prediction system with a few shear-wave vibrators and horizontal receivers. The boring process is interrupted at regular intervals to carry out active surveys. The vibrators are then pushed against the rock or soil in front of the cutting wheel of the machine. The design of the vibrators is based on linear synchronous motor technology that can generate very low frequencies, starting at 5 Hz. These vibrators generate a force in a direction perpendicular to the tunnel axis. Horizontal receivers measure the particle velocity, mainly due to the horizontally polarised shear waves. Because imaging with conventional migration methods suffers from artefacts, caused by the incomplete aperture and inaccuracies in the assumed velocity model, we use two-dimensional horizontally polarised shear full-waveform inversion to resolve the subsurface shear properties. The classic cycle-skipping problem, which can make the application of fullwaveform inversion cumbersome, is avoided by the capacity of the vibrators to generate low frequencies. In this paper, we demonstrate the capabilities of the proposed seismic system through a number of synthetic and field experiments.
Pipe Penetrating Radar (PPR) is the underground, in-pipe application of GPR, a non destructive testing method that can detect defects and cavities within and outside mainline diameter (>18 in / 450mm) non-ferrous (concrete, PVC, HOPE, vitrified clay, etc.) underground pipes 11, 21. The
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.