Melon seed husk (MSH) biochar was used in a single cell direct carbon fuel cell (DCFC) as an alternative biofuel. The DCFCs belong to a generation of energy conversion devices that are characterised with higher efficiencies, lower emission of pollutants and MSH biochar as the fuel. Several analytical techniques (proximate, ultimate and thermo-chemical analysis) were employed to analyse the characteristics of the biomass fuel, their effects on the cell’s performance, and the electrochemical reactions between the fuel and the electrolyte in the system. High carbon content and calorific values are some of the parameters responsible for good performances. The performance of a lab-scale DCFC made of ceramic tubes using molten carbonate electrolyte was investigated. Binary carbonates mixture (Na2CO3-K2CO3, 38-62 mol.%) was used as electrolyte and the waste MSH carbonised at 450oC as biofuel. A practical evaluation of the fuel used in the DCFC system was conducted, for varying temperature of 100 - 800oC. The maximum open circuit voltage (OCV) was 0.71 V. With an applied load resistance and active surface area of 5.73 cm2 the maximum power density was 5.50 mWcm-2 and the current density was 29.67 mAcm-2 at 800oC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.