Electron backscattering diffraction (EBSD) was used to study a stationary shoulder friction stir weld in Ti-6Al-4V. Weld temperatures exceeded the b-transus, resulting in a supertransus zone (STZ) that encompassed all of the thermomechanically affected zone (TMAZ) and a portion of the heat-affected zone (HAZ). Standard EBSD provided limited information on the material behavior at high temperature in the b phase field, so in-house software was used to reconstruct the crystallographic orientations of the high-temperature b phase. The portion of the HAZ that lay within the STZ exhibited the same b texture at high temperature as the retained b phase in the unaffected parent material. In the TMAZ, material was deformed in the high-temperature b phase field and, on cooling, transformed to a fully lamellar microstructure. The b textures at high temperature were dominated by the D 2 " 1 " 12 À Á 111 ½ simple shear texture component. The a phase textures in the fully lamellar microstructure that formed on cooling were inherited from the shear textures of the b phase, but significant variant selection occurred.
The use of a double sided friction stir welding tool (known as a bobbin tool) has the advantage of giving a processed zone in the workpiece which is more or less rectangular in cross section, as opposed the triangular zone which is more typically found when conventional friction stir welding tool designs are used. In addition, the net axial force on the workpiece is almost zero, which has significant beneficial implications in machine design and cost. However, the response of these tools in generating fine microstructures in the nugget area has not been established. The paper presents detailed metallographic analyses of microstructures produced in 25mm AA6082-T6 aluminium wrought alloy, and examines grain size, texture and mechanical properties as a function of processing parameters and tool design, and offers comparison with data from welds made with conventional tools.
The evolution of microstructure and crystallographic texture has been investigated in double-sided friction stir welded microalloyed steel, using electron backscatter diffraction (EBSD). The microstructure analyses show that the centre of stirred zone reached a temperature between Ac 1 -Ac 3 during FSW, resulting in a dual phase austenitic/ ferritic microstructure. The temperatures in the thermo-mechanically affected zone and the overlapped area between the first and second weld pass did not exceed the Ac 1 . The shear generated by the rotation probe occurs in austenitic/ferritic phase field where the austenite portion of the microstructure is transformed to a bainitic ferrite, on cooling. Analysis of crystallographic textures with regard to shear flow lines generated by the probe tool, show the dominance of simple shear components across the whole weld. The austenite texture at Ac 1 -Ac 3 is dominated by the B and simple shear texture components, where the bainite phase textures formed on cooling were inherited from the shear textures of the austenite phase with relatively strong variant selection. The ferrite portion of the stirred zone and the ferrites in the thermo-mechanically affected zones and the overlapped area underwent shear deformation with textures dominated by the D 1 and D 2 simple shear texture components. The formation of ultra-fine equiaxed ferrite with submicron grain size has been observed in the overlapped area between the first and second weld pass. This is due to continuous dynamic strain-induced recrystallisation as a result of simultaneous severe shear deformation and drastic undercooling.
Deformation dilatometry has been used to simulate controlled hot rolling followed by controlled cooling of a group of low-and ultralow-carbon microalloyed steels containing additions of boron and/or molybdenum to enhance hardenability. Each alloy was subjected to simulated recrystallization and nonrecrystallization rolling schedules, followed by controlled cooling at rates from 0.1 ЊC/s to about 100 ЊC/s, and the corresponding continuous-cooling-transformation (CCT) diagrams were constructed. The resultant microstructures ranged from polygonal ferrite (PF) for combinations of slow cooling rates and low alloying element contents, through to bainitic ferrite accompanied by martensite for fast cooling rates and high concentrations of alloying elements. Combined additions of boron and molybdenum were found to be most effective in increasing steel hardenability, while boron was significantly more effective than molybdenum as a single addition, especially at the ultralow carbon content. Severe plastic deformation of the parent austenite (Ͼ0.45) markedly enhanced PF formation in those steels in which this microstructural constituent was formed, indicating a significant effective decrease in their hardenability. In contrast, in those steels in which only nonequilibrium ferrite microstructures were formed, the decreases in hardenability were relatively small, reflecting the lack of sensitivity to strain in the austenite of those microstructural constituents forming in the absence of PF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.