The aims of this study were to describe the reproductive cycle of the European anchovy (Engraulis encrasicolus) off the south coast of Sicily and determine whether intra-and inter-annual reproductive trait variations, if any, are adaptive responses which maximize reproductive success under environmental fluctuations. Biological data were collected from purse seine and mid-water pelagic trawl commercial catches landed in Sciacca (Sicily) over 6 yr (1997)(1998)(1999)(2000)(2001)(2002) at fortnightly intervals, analysing a total of 84 581 individuals. No inter-annual changes in length at first reproduction were observed, with a mean pooled value of 11.26 cm for both sexes being found. Spawning intensity, indicated by gonadosomatic index, condition factor and length-weight relationships, seem to be governed by food availability prior to spawning. Anchovy reproductive investment was limited by the area's low primary production. There was a synchrony between reproductive cycle and temperature. Water warming marks the onset of a period of high water stability in the area, and its later cooling marks the onset of a period with low water stability. The relationship between reproductive cycle and temperature is therefore probably a reproductive strategy having evolved to ensure that spawning takes place during the period of the year when water column stability is higher, favouring food concentration and egg and larval retention in the spawning areas.
Identification of the potential habitat of European anchovy (Engraulis encrasicolus) at different life stages in relation to environmental conditions is an interesting subject from both ecological and management points of view. For this purpose, acoustic data from different seasons and different parts of the Mediterranean Sea along with satellite environmental and bathymetry data were modelled using generalized additive models. Similarly, egg distribution data from summer ichthyoplankton surveys were used to model potential spawning habitat. Selected models were used to produce maps presenting the probability of anchovy presence (adults, juveniles and eggs) in the entire Mediterranean basin, as a measure of habitat adequacy. Bottom depth and sea surface chlorophyll concentration were the variables found important in all models. Potential anchovy habitats were located over the continental shelf for all life stages examined. An expansion of the potential habitat from the peak spawning (early summer) to the late spawning season (early autumn) was observed. However, the most suitable areas for the presence of anchovy spawners seem to maintain the same size between seasons. Potential juvenile habitats were associated with highly productive inshore waters, being less extended and closer to coast during winter than late autumn. Potential spawning habitat in June and July based on ichthyoplankton surveys overlapped but were wider in extent compared with adult potential habitat from acoustics in the same season. Similarities and dissimilarities between the anchovy habitats as well as comparisons with sardine habitats in the oligotrophic Mediterranean Sea and other ecosystems with higher productivity are discussed.
European anchovy egg occurrence and density data from summer surveys (1998–2007) and oceanographic data were examined to study the mechanisms that control the spatial distribution of anchovy spawning habitat in the Strait of Sicily. Quotient analysis indicated habitat preference for temperature (18–19°C), bottom depth (50–100 m), water column stability (13–14 cycle h−1), fluorescence (0.10–0.15 μg m−3 Chl a), salinity (37.5–37.6 PSU), current speed (0.20–0.25 m s−1) and density (26.7–26.8 kg m−3, σt). Canonical discriminant analysis identified temperature, column stability and fluorescence as major drivers of anchovy spawning habitat. Three of the 4 years which had lower egg abundance were warmer years, with low values of primary productivity. A geostrophic current flowing through the Strait (the Atlantic Ionic Stream, AIS) was confirmed as the main source of environmental variability in structuring the anchovy spawning ground by its influence on both the oceanography and distribution of anchovy eggs. This 10‐yr data series demonstrates recurrent but also variable patterns of oceanographic flows and egg distribution. A lack of freshwater flow in this area appears to depress productivity in the region, but certain and variable combinations of environmental conditions can elevate production in some sub‐areas in most years or other sub‐areas in fewer years. These temporal and spatial patterns are consistent with an ocean triad theory postulating that processes of oceanographic enrichment, concentration, and retention may help predict fishery yields.
Integrated information from different parts of the Mediterranean Sea was used to model the spatial and temporal variability of the distribution grounds of the sardine population. Acoustic data from the North Aegean Sea (Eastern Mediterranean), the Adriatic Sea (Central Mediterranean), the Sicily Channel (Central Mediterranean) and Spanish Mediterranean waters (Western Mediterranean) were analysed along with satellite environmental and bathymetric data to model the potential habitat of sardine during summer, autumn and early winter. Generalized additive models were applied in a presence−absence approach. Models were validated in terms of their predictive ability and used to construct maps exhibiting the probability of sardine presence throughout the entire Mediterranean basin as a measure of habitat adequacy for sardine. Bottom depth and sea surface temperature were the environmental variables that explained most of the data variability. Several areas along the Mediterranean coastline were indicated as suitable habitat for sardine in different seasons. An expansion of these areas over the continental shelf, up to 100 m depth, was consistently noticed from summer to winter. This was attributed to the horizontal movements of sardine related to spawning (i.e. winter period) and the peculiarities of the Mediterranean Sea where areas favouring growth, feeding and spawning processes tend to be localised and prevent a long range, offshore migration as opposed to large upwelling ecosystems. Moreover, within the study period, a positive relationship between the extent of sardine preferred habitat and landings was revealed for both summer and winter seasons throughout the entire Mediterranean Sea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.