Two global level 2 sea surface temperature (SST) products are generated at NOAA from the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS) sensor data records (L1) with two independent processing systems, the Joint Polar Satellite System (JPSS) Interface Data Processing Segment (IDPS) and the NOAA heritage Advanced Clear-Sky Processor for Oceans (ACSPO). The two systems use different SST retrieval and cloud masking algorithms. Validation against in situ and L4 analyses has shown suboptimal performance of the IDPS product. In this context, existing operational and proposed SST algorithms have been evaluated for their potential implementation in IDPS. This paper documents the evaluation methodology and results. The performance of SST retrievals is characterized with bias and standard deviation with respect to in situ SSTs and sensitivity to true SST. Given three retrieval metrics, all being variable in space and with observational conditions, an additional integral metric is needed to evaluate the overall performance of SST algorithms. Therefore, we introduce the Quality Retrieval Domain (QRD) as a part of the global ocean, where the retrieval characteristics meet predefined specifications. Based on the QRDs analyses for all tested algorithms over a representative range of specifications for accuracy, precision, and sensitivity, we have selected the algorithms developed at the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF) for implementation in IDPS and ACSPO. Testing the OSI-SAF algorithms with ACSPO and IDPS products shows the improved consistency between VIIRS SST and Reynolds L4 daily analysis. Further improvement of the IDPS SST product requires adjustment of the VIIRS cloud and ice masks.
The Advanced Clear Sky Processor for Oceans (ACSPO) generates clear-sky products, such as SST, clear-sky radiances, and aerosol, from Advanced Very High Resolution Radiometer (AVHRR)-like measurements. The ACSPO clear-sky mask (ACSM) identifies clear-sky pixels within the ACSPO products. This paper describes the ACSM structure and compares the performances of ACSM and its predecessor, Clouds from AVHRR Extended Algorithm (CLAVRx). ACSM essentially employs online clear-sky radiative transfer simulations enabled within ACSPO with the Community Radiative Transfer Model (CRTM) in conjunction with numerical weather prediction atmospheric [Global Forecast System (GFS)] and SST [Reynolds daily high-resolution blended SST (DSST)] fields. The baseline ACSM tests verify the accuracy of fitting observed brightness temperatures with CRTM, check retrieved SST for consistency with Reynolds SST, and identify ambient cloudiness at the boundaries of cloudy systems. Residual cloud effects are screened out with several tests, adopted from CLAVRx, and with the SST spatial uniformity test designed to minimize misclassification of sharp SST gradients as clouds. Cross-platform and temporal consistencies of retrieved SSTs are maintained by accounting for SST and brightness temperature biases, estimated within ACSPO online and independently from ACSM. The performance of ACSM is characterized in terms of statistics of deviations of retrieved SST from the DSST. ACSM increases the amount of ''clear'' pixels by 30% to 40% and improves statistics of retrieved SST compared with CLAVRx. ACSM is also shown to be capable of producing satisfactory statistics of SST anomalies if the reference SST field for the exact date of observations is unavailable at the time of processing.
Abstract:In response to its users' needs, the National Oceanic and Atmospheric Administration (NOAA) initiated reanalysis (RAN) of the Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC; 4 km) sea surface temperature (SST) data employing its Advanced Clear Sky Processor for Oceans (ACSPO) retrieval system. Initially, AVHRR/3 data from five NOAA and two Metop satellites from 2002 to 2015 have been reprocessed. The derived SSTs have been matched up with two reference SSTs-the quality controlled in situ SSTs from the NOAA in situ Quality Monitor (iQuam) and the Canadian Meteorological Centre (CMC) L4 SST analysis-and analyzed in the NOAA SST Quality Monitor (SQUAM) online system. The corresponding clear-sky ocean brightness temperatures (BT) in AVHRR bands 3b, 4 and 5 (centered at 3.7, 11, and 12 µm, respectively) have been compared with the Community Radiative Transfer Model simulations in another NOAA online system, Monitoring of Infrared Clear-sky Radiances over Ocean for SST (MICROS). For some AVHRRs, the time series of "AVHRR minus reference" SSTs and "observed minus model" BTs are unstable and inconsistent, with artifacts in the SSTs and BTs strongly correlated. In the official "Reanalysis version 1" (RAN1), data from only five platforms-two midmorning (NOAA-17 and Metop-A) and three afternoon -were included during the most stable periods of their operations. The stability of the SST time series was further improved using variable regression SST coefficients, similarly to how it was done in the NOAA/NASA Pathfinder version 5.2 (PFV5.2) dataset. For data assimilation applications, especially those blending satellite and in situ SSTs, we recommend bias-correcting the RAN1 SSTs using the newly developed sensor-specific error statistics (SSES), which are reported in the product files. Relative performance of RAN1 and PFV5.2 SSTs is discussed. Work is underway to improve the calibration of AVHRR/3s and extend RAN time series, initially back to the mid-1990s and later to the early 1980s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.