Background/aimTo assess and compare measured ventilatory volumes (forced expiratory volume in 1 s (FEV1), peak expirium flow (PEF) and maximal voluntary ventilation (MVV)), ventilatory function capacities (forced vital capacity (FVC) and vital capacity (VC)) and FEV1/VC ratio in a sample of power and endurance elite athletes and their age-matched and sex-matched sedentary control group.MethodsA cross-sectional study was applied on male elite athletes (n=470) who were classified according to the type of the predominantly performed exercise in the following way: group 1: endurance group (EG=270), group 2: power athletes group (SG=200) and group 3: sedentary control group (CG=100). The lung VC, FVC, FEV1, FEV1/FVC ratio, PEF and MVV were measured in all of the observed subjects, who were also classified with regard to body mass index (BMI) and the percentage of the body fat (BF%).ResultsThe CG had the highest BF% value, while the endurance group had the lowest BMI and BF% value, which is significantly different from the other two groups (p<0.05). The observed values of VC, FVC and FEV1 in the EG were significantly higher than those from the other two groups (p<0.05). There were no differences concerning the observed FEV1/FVC ratio.ConclusionsA continued endurance physical activity leads to adaptive changes in spirometric parameters (VC, FVC and FEV1), highlighting the fact that there is a need for specific consideration of different respiratory ‘pattern’ development in different types of sport, which also has to be further evaluated.
Composite systems of alternately electrodeposited nanocrystalline Ni and Cu films on cold-rolled polycrystalline copper substrates were fabricated. Highly-densified parallel interfaces which can give rise to high strength of composites are obtained by depositing layers at a very narrow spacing. The hardness properties of the composite systems were characterized using Vickers microhardness testing with loads ranging from 1.96 N down to 0.049 N. Above a certain critical penetration depth, a measured hardness value is not the hardness of the electrodeposited film, but the so-called „composite hardness“, because the substrate also participates in the plastic deformations during the indentation process. Dependence of microhardness on layer thickness, Ni/Cu layer thickness ratio and total thickness of the film was investigated. Model of Korsunsky was applied to the experimental data in order to determine the composite film hardness. The microhardness increased with decreasing the layer thickness down to 30 nm and it is consistent with the Hall-Petch relation. Layer thickness and layer thickness ratio are the important parameters which are responsible for making decision of the total film thickness
Our 60-year-old patient menarche in 13-year, two delivery, last menstruation in 53-year, without uterine bleeding or any kind of symptomatology. The gynecological transvaginal ultrasound examination showed hyperplasio endometrii (20mm). After curettage, pathological examination was diagnostic polypus carcinomatoides. The patient with HTA and obesity was admitted to and operated on at the Gynecological Department due to endometrial carcinoma (FIGO stage IA1). Because of her giant obesity, BMI – 71.50 kg/m2, weight 219 kg and height 175cm, surgery by the abdominal approach was very difficult to perform, so vaginal hysterectomy was carried out. The procedure was completed within 127 minutes without any intraoperative complications. Blood loss was less than 100ml. The patient was discharged on postoperative day 7. The patient was followed up for 6 months after surgery. No complications or recurrence were reported during the 6-month follow up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.